首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytidine 5(')-triphosphate (CTP) synthase (EC 6.4.3.2) catalyzes the transfer of an amino group to the 4 position of uridine 5(')-triphosphate (UTP) to yield CTP. The reaction proceeds by activation of the base moiety of UTP by adenosine 5(')-triphosphate (ATP)-dependent phosphorylation. The activated intermediate reacts with NH(3) in the solution or is obtained by hydrolysis of glutamine. The Lactococcus lactis CTP synthase shows significant differences from the enzymes from Escherichia coli, yeast, and mammals. One is the apparent stability of the L. lactis CTP synthase tetramer in the absence of the nucleotides ATP and UTP. This condition causes the E. coli, yeast, and mammal enzymes to dissociate into dimers. However, the L. lactis CTP synthase shows substrate inhibition by NH(4)Cl that coincides with the range of NH(4)Cl concentrations that apparently dissociates tetrameric enzyme into dimers. Even though regular substrate inhibition was observed with NH(4)Cl when the ionic strength was held constant, a significant part of the inhibition could be shown to be due to the increase in ionic strength with increasing substrate concentration. Since the substrate inhibition by NH(4)Cl was relieved by increasing the equimolar ATP and UTP concentrations, it appeared that the substrate nucleotides stabilized the tetramer in a manner similar to that found in the absence of salt for other CTP synthases. In contrast to the suggested hydrophobic nature of the tetramer interactions in E. coli CTP synthase, the dissociation of the L. lactis CTP synthase tetramer in response to an increase in ionic strength suggests that the tetramer is stabilized by ionic interactions.  相似文献   

2.
The design, synthesis, and crystallization of an alpha-helical peptide   总被引:6,自引:0,他引:6  
Twelve- and sixteen-residue peptides have been designed to form tetrameric alpha-helical bundles. Both peptides are capable of folding into amphiphilic alpha-helices, with leucyl residues along one face and glutamyl and lysyl residues along the opposite face. Four such amphiphilic alpha-helices are capable of forming a noncovalently bonded tetramer. Neighboring helices run in antiparallel directions in the design, so that the complex has 222 symmetry. In the designed tetramer, the leucyl side chains interdigitate in the center in a hydrophobic interaction, and charged side chains are exposed to the solvent. The designed 12-mer (ALPHA-1) has been synthesized, and it forms helical aggregates in aqueous solution as judged by circular dichroic spectroscopy. It has also been crystallized and characterized by x-ray diffraction. The crystal symmetry is compatible with (but does not prove) the design. The design can be extended to a four-alpha-helical bundle formed from a single polypeptide by adding three peptide linkers.  相似文献   

3.
4.
Improving coiled-coil stability by optimizing ionic interactions   总被引:5,自引:0,他引:5  
Alpha-helical coiled coils are a common protein oligomerization motif stabilized mainly by hydrophobic interactions occurring along the coiled-coil interface. We have recently designed and solved the structure of a two-heptad repeat coiled-coil peptide that is stabilized further by a complex network of inter- and intrahelical salt-bridges in addition to the hydrophobic interactions. Here, we extend and improve the de novo design of this two heptad-repeat peptide by four newly designed peptides characterized by different types of ionic interactions. The contribution of these different types of ionic interactions to coiled-coil stability are analyzed by CD spectroscopy and analytical ultracentrifugation. We show that all peptides are highly alpha-helical and two of them are 100% dimeric under physiological conditions. Furthermore, we have solved the X-ray structure of the most stable of these peptides and the rational design principles are verified by comparing this structure to the structure of the parent peptide. We show that by combining the most favorable inter- and intrahelical salt-bridge arrangements it is possible to design coiled-coil oligomerization domains with improved stability properties.  相似文献   

5.
The HIV-1 Integrase protein (IN) mediates the integration of the viral cDNA into the host genome. IN is an emerging target for anti-HIV drug design, and the first IN-inhibitor was recently approved by the FDA. We have developed a new approach for inhibiting IN by "shiftides": peptides derived from its cellular binding protein LEDGF/p75 that inhibit IN by shifting its oligomerization equilibrium from the active dimer to an inactive tetramer. In addition, we described two peptides derived from the HIV-1 Rev protein that interact with IN and inhibit its activity in vitro and in cells. In the current study, we show that the Rev-derived peptides also act as shiftides. Analytical gel filtration and cross-linking experiments showed that IN was dimeric when bound to the viral DNA, but tetrameric in the presence of the Rev-derived peptides. Fluorescence anisotropy studies revealed that the Rev-derived peptides inhibited the DNA binding of IN. The Rev-derived peptides inhibited IN catalytic activity in vitro in a concentration-dependent manner. Inhibition was much more significant when the peptides were added to free IN before it bound the viral DNA than when the peptides were added to a preformed IN-DNA complex. This confirms that the inhibition is due to the ability of the peptides to shift the oligomerization equilibrium of the free IN toward a tetramer that binds much weaker to the viral DNA. We conclude that protein-protein interactions of IN may serve as a general valuable source for shiftide design.  相似文献   

6.
Several factors reduce the efficacy of natural peptides as drug candidates; chief among these is their rapid digestion by human proteases. Over the last few decades, a number of strategies have been employed to increase the enzymatic stability of peptides, including the introduction of non-natural amino acids. This study aims at the investigation of the effect of side chain fluorination on the stability of peptides in human blood plasma. Ten model peptides with different non-natural amino acids were designed, synthesized and subjected to enzymatic degradation in human blood plasma. The stability of the studied peptides was followed by HPLC analysis and compared to the control peptide built with only proteinogenic residues. Four main hydrolysis products were detected and identified by mass spectrometry, three of them being characteristic cleavage products of the serine protease Elastase. A final enzymatic study with isolated Elastase validated then the outcome of the plasma study. This case study contributes to the application of fluorinated amino acids in the design of proteolytically stable peptides and proteins with potential clinical relevance.  相似文献   

7.
In a previous work, chemical modification of Cys-238 of Escherichia coli Pfk-2 raised concerns on the importance of the dimeric state of Pfk-2 for enzyme activity, whereas modification of Cys-295 impaired the enzymatic activity and the MgATP-induced tetramerization of the enzyme. The results presented here demonstrate that the dimeric state of Pfk-2 is critical for the stability and the activity of the enzyme. The replacement of Cys-238 by either Ala or Phe shows no effect on the kinetic parameters, allosteric inhibition, dimer stability and oligomeric structure of Pfk-2. However, the mutation of Cys-295 by either Ala or Phe provokes a decrease in the k(cat) value and an increment in the K(m) values for both substrates. We suggest that the Cys-295 residue participates in intersubunit interactions in the tetramer since the Cys-295-Phe mutant exhibits higher tetramer stability, which in turn results in an increase in the fructose-6-P concentration required for the reversal of the MgATP inhibition relative to the wild type enzyme.  相似文献   

8.
The influence of phosphorylation on the properties of lactate dehydrogenase (LDH) has been studied. Data obtained using the immobilization approach support the assumption that the autophosphorylation of LDH discovered previously in the presence of ATP has no relation to protein kinase activity of the enzyme. Phosphorylation of native LDH by tyrosine kinases was shown to be inefficient. However, the efficiency of the phosphorylation considerably increased after the dissociation of LDH into non-native forms of the enzyme. Ca2+/calmodulin-dependent protein kinase catalyzes incorporation of 0.8-0.9 mole phosphate per mole of LDH tetramer. The phosphorylation results in an increase in activity by 25-30% and increases markedly the stability of the enzyme during cold inactivation. Phosphorylation of LDH by Ca2+/calmodulin-dependent protein kinase, unlike the phosphorylation on tyrosine residues, is supposed to be of importance for the control of cell metabolism.  相似文献   

9.
Triosephophate isomerase (TIM) is a dimeric enzyme in eucarya, bacteria and mesophilic archaea. In hyperthermophilic archaea, however, TIM exists as a tetramer composed of monomers that are about 10% shorter than other eucaryal and bacterial TIM monomers. We report here the crystal structure of TIM from Thermoproteus tenax, a hyperthermophilic archaeon that has an optimum growth temperature of 86 degrees C. The structure was determined from both a hexagonal and an orthorhombic crystal form to resolutions of 2.5A and 2.3A, and refined to R-factors of 19.7% and 21.5%, respectively. In both crystal forms, T.tenax TIM exists as a tetramer of the familiar (betaalpha)(8)-barrel. In solution, however, and unlike other hyperthermophilic TIMs, the T.tenax enzyme exhibits an equilibrium between inactive dimers and active tetramers, which is shifted to the tetramer state through a specific interaction with glycerol-1-phosphate dehydrogenase of T.tenax. This observation is interpreted in physiological terms as a need to reduce the build-up of thermolabile metabolic intermediates that would be susceptible to destruction by heat. A detailed structural comparison with TIMs from organisms with growth optima ranging from 15 degrees C to 100 degrees C emphasizes the importance in hyperthermophilic proteins of the specific location of ionic interactions for thermal stability rather than their numbers, and shows a clear correlation between the reduction of heat-labile, surface-exposed Asn and Gln residues with thermoadaptation. The comparison confirms the increase in charged surface-exposed residues at the expense of polar residues.  相似文献   

10.
This study presents an application of two approaches in the design of constrained and unconstrained peptides in an investigation of the peptide binding effect for HMG-CoA reductase (HMGR). In previous works, hypocholesterolemic peptides isolated from soybean were determined as competitive inhibitory peptides for HMGR. Based on the modeling of an active peptide backbone in the active site of HMGR, two peptide libraries for constrained and unconstrained peptides were designed using different amino acids varying in hydrophobicity and electronic properties. Active peptides were selected by the design parameter 'V' or 'Pr', which reflects the probability of active peptide conformations for constrained and unconstrained peptides, respectively. Using peptides designed as mimics of HMGR substrates, and a combination of in vitro test and circular dichroism study, it was found that: (1) peptide binding causes an ordering of secondary structure, reflecting an increase of alpha-helical content; (2) HMGR binds the peptide without closure of the active site; and (3) peptide binding induces the protein aggregation. The GFPDGG peptide (IC(50)=1.5 microM), designed on the basis of the rigid peptide backbone, increases the inhibitory potency more than 300 times compared to the first isolated LPYP peptide (IC(50)=484 microM) from soybean. The obtained data imply the possibility of designing a highly potent inhibitory peptide for HMGR and confirm that changes of the secondary structure in the enzyme play an important role in the mechanism of HMGR inhibition.  相似文献   

11.
Water-soluble phospholamban (WSPLB) is a designed, water-soluble analogue of the pentameric membrane protein phospholamban (PLB), which contains the same core and interhelical residues as PLB, with only the solvent-exposed positions mutated. WSPLB contains the same secondary and quaternary structure as PLB. The hydrophobic cores of PLB and WSPLB contain Leu and Ile at the a- and d-positions of a heptad repeat (abcdefg) from residues 31-52, while residues 21-30 are rich in polar amino acids at these positions. While the full-length WSPLB forms pentamers in solution, truncated peptides lacking residues 21-30 are largely tetrameric. Thus, truncation of residues 1-20 promotes a switch from pentamer to tetramer formation. Here, the motifs for WSPLB pentamerization were elucidated by characterizing a series of peptides, which were progressively truncated in this polar 'switch' region. When fully present, the 'switch' region promotes pentamer formation in WSPLB, by destabilizing a more stable tetrameric species which exists in its absence. We find that the burial of hydrogen bonding residues from 21 to 30 drives WSPLB from a tetramer to a pentamer, with direct implications for coiled-coil design.  相似文献   

12.
This study presents a design of a highly potent and competitive inhibitory peptide for 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). HMGR is the major regulatory enzyme of cholesterol biosynthesis and the target enzyme of many investigations aimed at lowering the rate of cholesterol biosynthesis. In previous studies, the two hypocholesterolemic peptides (LPYP and IAVPGEVA) were isolated and identified from soy protein. Based on these peptide sequences, a number of peptides were designed previously by using the correlation between the conformational flexibility and bioactivity. The design method that was applied in previous studies was slightly modified for the purpose of the current research and 12 new peptides were designed and synthesized. Among all peptides, SFGYVAE showed the highest ability to inhibit HMGR. A kinetic analysis revealed that this peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K i) of 12?±?0.4?nM. This is an overall 14,500-fold increase in inhibitory activity compared to the first isolated LPYP peptide from soybeans. Conformational data support a conformation of the designed peptides close to the bioactive conformation of the previously synthesized active peptides.  相似文献   

13.
14.
Dissimilatory oxidation of thiosulfate in the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. Here, we report the crystal structures of a stand-alone SoxY protein of C. limicola f. thiosulfatophilum, solved at 2.15 A and 2.40 A resolution using X-ray diffraction data collected at 100 K and room temperature, respectively. The structure reveals a monomeric Ig-like protein, with an N-terminal alpha-helix, that oligomerizes into a tetramer via conserved contact regions between the monomers. The tetramer can be described as a dimer of dimers that exhibits one large hydrophobic contact region in each dimer and two small hydrophilic interface patches in the tetramer. At the tetramer interface patch, two conserved redox-active C-terminal cysteines form an intersubunit disulfide bridge. Intriguingly, SoxY exhibits a dimer/tetramer equilibrium that is dependent on the redox state of the cysteines and on the type of sulfur substrate component bound to them. Taken together, the dimer/tetramer equilibrium, the specific interactions between the subunits in the tetramer, and the significant conservation level of the interfaces strongly indicate that these SoxY oligomers are biologically relevant.  相似文献   

15.
Crystallographic studies have suggested that the cysteine at position 67 (Cys(67)) in the B pocket of the MHC molecule HLA-B*2705 is of importance for peptide binding, and biophysical studies have documented altered thermodynamic stability of the molecule when Cys(67) was mutated to serine (Ser(67)). In this study, we used HLA-B27.Cys(67) and HLA-B27.Ser(67) tetramers with defined T cell epitopes to determine the contribution of this polymorphic, solvent-inaccessible MHC residue to T cell recognition. We generated these HLA-B27 tetramers using immunodominant viral peptides with high binding affinity to HLA-B27 and cartilage-derived peptides with lower affinity. We demonstrate that the yield of refolding of HLA-B27.Ser(67) molecules was higher than for HLA-B27.Cys(67) molecules and strongly dependent on the affinity of the peptide. T cell recognition did not differ between HLA-B27.Cys(67) and HLA.B27.Ser(67) tetramers for the viral peptides that were investigated. However, an aggrecan peptide-specific T cell line derived from an HLA-B27 transgenic BALB/c mouse bound significantly stronger to the HLA-B27.Cys(67) tetramer than to the HLA-B27.Ser(67) tetramer. Modeling studies of the molecular structure suggest the loss of a SH ... pi hydrogen bond with the Cys-->Ser substitution in the HLA-B27 H chain which reduces the stability of the HLA-B27/peptide complex. These results demonstrate that a solvent-inaccessible residue in the B pocket of HLA-B27 can affect TCR binding in a peptide-dependent fashion.  相似文献   

16.
Lim KH  Huang H  Pralle A  Park S 《Biochemistry》2011,50(40):8682-8691
Although streptavidin's high affinity for biotin has made it a widely used and studied binding protein and labeling tool, its tetrameric structure may interfere with some assays. A streptavidin mutant with a simpler quaternary structure would demonstrate a molecular-level understanding of its structural organization and lead to the development of a novel molecular reagent. However, modulating the tetrameric structure without disrupting biotin binding has been extremely difficult. In this study, we describe the design of a stable monomer that binds biotin both in vitro and in vivo. To this end, we constructed and characterized monomers containing rationally designed mutations. The mutations improved the stability of the monomer (increase in T(m) from 31 to 47 °C) as well as its affinity (increase in K(d) from 123 to 38 nM). We also used the stability-improved monomer to construct a dimer consisting of two streptavidin subunits that interact across the dimer-dimer interface, which we call the A/D dimer. The biotin binding pocket is conserved between the tetramer and the A/D dimer, and therefore, the dimer is expected to have a significantly higher affinity than the monomer. The affinity of the dimer (K(d) = 17 nM) is higher than that of the monomer but is still many orders of magnitude lower than that of the wild-type tetramer, which suggests there are other factors important for high-affinity biotin binding. We show that the engineered streptavidin monomer and dimer can selectively bind biotinylated targets in vivo by labeling the cells displaying biotinylated receptors. Therefore, the designed mutants may be useful in novel applications as well as in future studies in elucidating the role of oligomerization in streptavidin function.  相似文献   

17.
Protease stability is a key consideration in the development of peptide-based drugs. A major approach to increase the bioavailability of pharmacologically active peptides is the incorporation of non-natural amino acids. Due to the unique properties of fluorine, fluorinated organic molecules have proven useful in the development of therapeutically active small molecules as well as in materials and crop science. This study presents data on the ability of fluorinated amino acids to influence proteolytic stability when present in peptide sequences that are based on ideal protease substrates. Different model peptides containing fluorinated amino acids or ethylglycine in the P2, P1′or P2′ positions were designed according to the specificities of the serine protease, α-chymotrypsin (EC 3.4.21.1) or the aspartic protease, pepsin (EC 3.4.23.1). The proteolytic stability of the peptides toward these enzymes was determined by an analytical RP-HPLC assay with fluorescence detection and compared to a control sequence. Molecular modeling was used to support the interpretation of the structure–activity relationship based on the analysis of potential ligand-enzyme interactions. Surprisingly, an increase in proteolytic stability was observed only in a few cases. Thus, this systematic study shows that the proteolytic stability of fluorinated peptides is not predictable, but rather is a very complex phenomenon that depends on the particular enzyme, the position of the substitution relative to the cleavage site and the fluorine content of the side chain.  相似文献   

18.
We present crystal structures of the Anabaena sensory rhodopsin transducer (ASRT), a soluble cytoplasmic protein that interacts with the first structurally characterized eubacterial retinylidene photoreceptor Anabaena sensory rhodopsin (ASR). Four crystal structures of ASRT from three different spacegroups were obtained, in all of which ASRT is present as a planar (C4) tetramer, consistent with our characterization of ASRT as a tetramer in solution. The ASRT tetramer is tightly packed, with large interfaces where the well-structured beta-sandwich portion of the monomers provides the bulk of the tetramer-forming interactions, and forms a flat, stable surface on one side of the tetramer (the beta-face). Only one of our four different ASRT crystals reveals a C-terminal alpha-helix in the otherwise all-beta protein, together with a large loop from each monomer on the opposite face of the tetramer (the alpha-face), which is flexible and largely disordered in the other three crystal forms. Gel-filtration chromatography demonstrated that ASRT forms stable tetramers in solution and isothermal microcalorimetry showed that the ASRT tetramer binds to ASR with a stoichiometry of one ASRT tetramer per one ASR photoreceptor with a K(d) of 8 microM in the highest affinity measurements. Possible mechanisms for the interaction of this transducer tetramer with the ASR photoreceptor via its flexible alpha-face to mediate transduction of the light signal are discussed.  相似文献   

19.
Wnt signaling pathway plays a major role in the regulation of cell proliferation, migration, tissue homeostasis, tumor progression and cancer. This pathway can be antagonized by different proteins such as DKK proteins, which disrupt the initiatory complex (Frizzled–LRP6 complex). Therefore, interruption of its formation could be a promising strategy for the design of Low-density lipoprotein receptor-Related Protein 6 (LRP6) inhibitors. A computational study was conducted in order to assist in the design of inhibitory peptides against LRP6 as co-receptor of frizzled. Twelve fragments as peptide derivatives of natural ligand of LRP6 receptor (DKK1) were designed using the information from the analysis of the DKK1_C/LRP6 complex, hot spot residues and the secondary structure. These fragments were based on cys2 domain of DKK1. The designed peptides were energy minimized by molecular dynamics simulations in the presence and absence of LRP6 receptor and their binding affinities were investigated via molecular docking using ClusPro, HADDOCK and PRODIGY webservers. Finally, the stability and free energy of binding in peptides were calculated by FoldX software. The results showed that four designed peptides had the highest affinity (the interaction energy: ?10.2867, ?10.1388, ?7.94339 and ?7.57536 kcal/mol) to interact with the receptor which showed the most interacting residues and the lowest free energy of binding. Also, the RMSD, RMSF and RoG of the protein–peptide complex exhibited less structural fluctuations which can be linked to the stability of peptides associated to the receptor. These peptides may be considered as candidates for inhibiting Wnt signaling pathway through LRP6 receptor.  相似文献   

20.
The inherent instability of peptides toward metabolic degradation is an obstacle on the way toward bringing potential peptide drugs onto the market. Truncation can be one way to increase the proteolytic stability of peptides, and in the present study the susceptibility against trypsin, which is one of the major proteolytic enzymes in the gastrointestinal tract, was investigated for several short and diverse libraries of promising cationic antimicrobial tripeptides. Quite surprisingly, trypsin was able to cleave very small cationic antimicrobial peptides at a substantial rate. Isothermal titration calorimetry studies revealed stoichiometric interactions between selected peptides and trypsin, with dissociation constants ranging from 1 to 20 microM. Introduction of hydrophobic C-terminal amide modifications and likewise bulky synthetic side chains on the central amino acid offered an effective way to increased half-life in our assays. Analysis of the degradation products revealed that the location of cleavage changed when different end-capping strategies were employed to increase the stability and the antimicrobial potency. This suggests that trypsin prefers a bulky hydrophobic element in S1' in addition to a positively charged side chain in S1 and that this binding dictates the mode of cleavage for these substrates. Molecular modeling studies supported this hypothesis, and it is shown that small alterations of the tripeptide result in two very different modes of trypsin binding and degradation. The data presented allows for the design of stable cationic antibacterial peptides and/or peptidomimetics based on several novel design principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号