首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
In higher plants, circadian rhythms are highly relevant to a wide range of biological processes. To such circadian rhythms, the clock (oscillator) is central, and recent intensive studies on the model higher plant Arabidopsis thaliana have begun to shed light on the molecular mechanisms underlying the functions of the central clock. Such representative clock-associated genes of A. thaliana are the homologous CCA1 and LHY genes, and five PRR genes that belong to a small family of pseudo-response regulators including TOC1. Others are GI, ZTL, ELF3, ELF4, LUX/PCL1, etc. In this context, a simple question arose as to whether or not the molecular picture of the model Arabidopsis clock is conserved in other higher plants. Here we made an effort to answer the question with special reference to Oryza sativa, providing experimental evidence that this model monocot also has a set of highly conserved clock-associated genes, such as those designated as OsCCA1, OsPRR-series including OsTOC1/OsPRR1, OsZTLs, OsPCL1 as well as OsGI. These results will provide us with insight into the general roles of plant circadian clocks, such as those for the photoperiodic control of flowering time that has a strong impact on the reproduction and yield in many higher plants.  相似文献   

2.
Using 26 chemically synthetic CLAVATA3/ESR (CLE) peptides, which correspond to the predicted products of the 31 Arabidopsis CLE genes, we investigated the CLE peptide function in Arabidopsis and rice. Treatment with some CLE peptides inhibited root elongation in rice as well as in Arabidopsis. It also reduced the size of the shoot apical meristem in Arabidopsis but not in rice. Database searches revealed 47 putative CLE genes in the rice genome and multiple CLE domains in some CLE genes, indicating diverse CLE function in these plants.  相似文献   

3.
4.
Development of plant genetic engineering has led to the deployment of transgenic crops and, simultaneously, to the need for a thorough assessment of the risks associated with their environmental release. This study investigated the occurrence of gene flow from transgenic rice to non-transgenic rice plants under agronomic conditions using a herbicide resistance gene as a tracer marker. Two field experiments were established in the paddy fields of two main Mediterranean rice-growing areas of Spain and Italy. In both locations analyses of phenotypic, molecular and segregation data showed that pollination of recipient plants with pollen of the transgenic source occurred at a significant frequency. A gene flow slightly lower than 0.1% was detected in a normal side-by-side plot design. Similar results were found in a circular plot when the plants were placed at 1-m distance from the transgenic central nucleus. A strong asymmetric distribution of the gene flow was detected among this circle and highest values (0.53%) were recorded following the direction of the dominant wind. A significant lowest value (0.01%) was found in the other circle (5 m from the transgenic plants) as was expected according to the characteristics of rice pollen. Such circular-field trial designs could also prove to be very useful in studying the gene flow to other commercial cultivars of rice with the aim of establishing strategies to prevent pollen dispersal from commercial transgenic fields to the neighbouring conventional fields. Received: 23 February 2001 / Accepted: 31 March 2001  相似文献   

5.
6.
Acombined RFLP and AFLP linkage map of an F6 recombinant inbred population, which was derived from a previously mapped F2 of a cross between the two drought resistant upland rice varieties Bala and Azucena, is presented. The map contains 101 RFLP and 34 AFLP markers on 17 linkage groups covering 1680 cM. Also presented is the approximate mapping position of a further four RFLP and 75 AFLP markers, which either could not be given a unique place on the map or for which the available data is not sufficient to allow confident positioning, and the result of quantitative trait locus (QTL) mapping of traits related to root-penetration ability. Root penetration was assessed by counting the number of root axes that penetrated a 3 mm-thick layer consisting of 80% wax and 20% white soft paraffin. Good root penetration would be expected to increase drought resistance where soil strength is high. Single-marker analysis revealed seven QTLs for the number of roots which penetrate the wax layer. In identical locations were seven QTLs for the ratio of penetrated to the total number of roots. Transgressive inheritance of positive alleles from Bala explained four of these QTLs. Comparison of the QTLs identified here with previous reports of QTLs for root morphology suggest that alleles which improve root penetration ability may also either make the roots longer or thicker. Received: 3 February 1999 / Accepted: 30 April 1999  相似文献   

7.
The growing number of rice microsatellite markers warrants a comprehensive comparison of allelic variability between the markers developed using different methods, with various sequence repeat motifs, and from coding and non-coding portions of the genome. We have performed such a comparison over a set of 323 microsatellite markers; 194 were derived from genomic library screening and 129 were derived from the analysis of rice-expressed sequence tags (ESTs) available in public DNA databases. We have evaluated the frequency of polymorphism between parental pairs of six inter- subspecific crosses and one inter-specific cross widely used for mapping in rice. Microsatellites derived from genomic libraries detected a higher level of polymorphism than those derived from ESTs contained in the GenBank database (83.8% versus 54.0%). Similarly, the other measures of genetic variability [the number of alleles per locus, polymorphism information content (PIC), and allele size ranges] were all higher in genomic library-derived microsatellites than in their EST-database counterparts. The highest overall degree of genetic diversity was seen in GA-containing microsatellites of genomic library origin, while the most conserved markers contained CCG- or CAG-trinucleotide motifs and were developed from GenBank sequences. Preferential location of specific motifs in coding versus non-coding regions of known genes was related to observed levels of microsatellite diversity. A strong positive correlation was observed between the maximum length of a microsatellite motif and the standard deviation of the molecular-weight of amplified fragments. The reliability of molecular weight standard deviation (SDmw) as an indicator of genetic variability of microsatellite loci is discussed. Received: 5 May 1999 / Accepted: 16 August 1999  相似文献   

8.
9.
In the course of transferring the brown planthopper resistance from a diploid, CC-genome wild rice species, Oryza eichingeri (IRGC acc. 105159 and 105163), to the cultivated rice variety 02428, we have isolated many alien addition and introgression lines. The O. eichingeri chromatin in some of these lines has previously been identified using genomic in situ hybridization and molecular-marker analysis. Here we cloned a tandemly repetitive DNA sequence from O. eichingeri IRGC acc105163, and detected it in 25 introgression lines. This repetitive DNA sequence showed high specificity to the rice CC genome, but was absent from all the four tetraploid species with BBCC or CCDD genomes. The monomer in this repetitive DNA sequence is 325–366-bp long, with a copy number of about 5,000 per 1 C of the O. eichingeri genome, showing 88% homology to a repetitive DNA sequence isolated from Oryza officinalis (2n=2x=24, CC). Fluorescent in situ hybridization revealed 11 signals distributed over eight O. eichingeri chromosomes, mostly in terminal or subterminal regions. Received: 28 November 2000 / Accepted: 3 April 2001  相似文献   

10.
Poaceae plants release 2′‐deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating Fe in vivo. Here, we demonstrate that hydroponic cultures of rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil‐plant analysis development (SPAD) values after treatment with 3–30 μm DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). These changes were accompanied by selective accumulation of Fe over other metals. While this enhanced growth was evident under high pH conditions, DMA application also enhanced seedling growth under normal pH conditions in which Fe was fairly accessible. Microarray and qRT‐PCR analyses revealed that exogenous DMA application attenuated the increased expression levels of various genes related to Fe transport and accumulation. Surprisingly, despite the preferential utilization of ammonium over nitrate as a nitrogen source by rice, DMA application also increased nitrate reductase activity and the expression of genes encoding high‐affinity nitrate transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest that exogenous DMA not only plays an important role in facilitating the uptake of environmental Fe, but also orchestrates Fe and nitrate assimilation for optimal growth under high pH conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号