首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Portal infusion of glucose in the mouse at a rate equivalent to basal endogenous glucose production causes hypoglycemia, whereas peripheral infusion at the same rate causes significant hyperglycemia. We used tracer and arteriovenous difference techniques in conscious 42-h-fasted dogs to determine their response to the same treatments. The studies consisted of three periods: equilibration (100 min), basal (40 min), and experimental (180 min), during which glucose was infused at 13.7 micromol.kg(-1).min(-1) into a peripheral vein (p.e., n = 5) or the hepatic portal (p.o., n = 5) vein. Arterial blood glucose increased approximately 0.8 mmol/l in both groups. Arterial and hepatic sinusoidal insulin concentrations were not significantly different between groups. p.e. exhibited an increase in nonhepatic glucose uptake (non-HGU; Delta8.6 +/- 1.2 micromol.kg(-1).min(-1)) within 30 min, whereas p.o. showed a slight suppression (Delta-3.7 +/- 3.1 micromol.kg(-1).min(-1)). p.o. shifted from net hepatic glucose output (NHGO) to uptake (NHGU; 2.5 +/- 2.8 micromol.kg-1.min-1) within 30 min, but p.e. still exhibited NHGO (6.0 +/- 1.9 micromol.kg(-1).min(-1)) at that time and did not initiate NHGU until after 90 min. Glucose rates of appearance and disappearance did not differ between groups. The response to the two infusion routes was markedly different. Peripheral infusion caused a rapid enhancement of non-HGU, whereas portal delivery quickly activated NHGU. As a result, both groups maintained near-euglycemia. The dog glucoregulates more rigorously than the mouse in response to both portal and peripheral glucose delivery.  相似文献   

2.
AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FA(OX)) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0-150 min), fasting dogs (n = 8) were infused with [3-(3)H]glucose followed by either 2-h saline or AICAR (1.5-2.0 mg x kg(-1) x min(-1)) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FA(OX) blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (R(d tissue)), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCR(g)) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC approximately pSer(221)) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and R(d tissue) responses were markedly attenuated, but MCR(g) and GF increased significantly. SkM substrates were unchanged, but ACC approximately pSer(221) rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FA(ox) blockade.  相似文献   

3.
To test whether hepatic insulin action and the response to an insulin-induced decrement in blood glucose are enhanced in the immediate postexercise state as they are during exercise, dogs had sampling (artery, portal vein, and hepatic vein) catheters and flow probes (portal vein and hepatic artery) implanted 16 days before a study. After 150 min of moderate treadmill exercise or rest, dogs were studied during a 150-min hyperinsulinemic (1 mU.kg(-1).min(-1)) euglycemic (n = 5 exercised and n = 9 sedentary) or hypoglycemic (65 mg/dl; n = 8 exercised and n = 9 sedentary) clamp. Net hepatic glucose output (NHGO) and endogenous glucose appearance (R(a)) and utilization (R(d)) were assessed with arteriovenous and isotopic ([3-(3)H]glucose) methods. Results show that, immediately after prolonged, moderate exercise, in relation to sedentary controls: 1) the glucose infusion rate required to maintain euglycemia, but not hypoglycemia, was higher; 2) R(d) was greater under euglycemic, but not hypoglycemic conditions; 3) NHGO, but not R(a), was suppressed more by a hyperinsulinemic euglycemic clamp, suggesting that hepatic glucose uptake was increased; 4) a decrement in glucose completely reversed the enhanced suppression of NHGO by insulin that followed exercise; and 5) arterial glucagon and cortisol were transiently higher in the presence of a decrement in glucose. In summary, an increase in insulin action that was readily evident under euglycemic conditions after exercise was abolished by moderate hypoglycemia. The means by which the glucoregulatory system is able to overcome the increase in insulin action during moderate hypoglycemia is related not to an increase in R(a) but to a reduction in insulin-stimulated R(d). The primary site of this reduction is the liver.  相似文献   

4.
AMP-activated protein kinase (AMPK), activated by an increase in intracellular AMP-to-ATP ratio, stimulates pathways that can restore ATP levels. We tested the hypothesis that AMPK activation influences extracellular fluid (ECF) K(+) homeostasis. In conscious rats, AMPK was activated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion: 38.4 mg x kg bolus then 4 mg x kg(-1) x min(-1) infusion. Plasma [K(+)] and [glucose] both dropped at 1 h of AICAR infusion and [K(+)] dropped to 3.3 +/- 0.04 mM by 3 h, linearly related to the increase in muscle AMPK phosphorylation. AICAR treatment did not increase urinary K(+) excretion. AICAR lowered [K(+)] whether plasma [K(+)] was chronically elevated or lowered. The K(+) infusion rate needed to maintain baseline plasma [K(+)] reached 15.7 +/- 1.3 micromol K(+) x kg(-1) x min(-1) between 120 and 180 min AICAR infusion. In mice expressing a dominant inhibitory form of AMPK in the muscle (Tg-KD1), baseline [K(+)] was not different from controls (4.2 +/- 0.1 mM), but the fall in plasma [K(+)] in response to AICAR (0.25 g/kg) was blunted: [K(+)] fell to 3.6 +/- 0.1 in controls and to 3.9 +/- 0.1 mM in Tg-KD1, suggesting that ECF K(+) redistributes, at least in part, to muscle ICF. In summary, these findings illustrate that activation of AMPK activity with AICAR provokes a significant fall in plasma [K(+)] and suggest a novel mechanism for redistributing K(+) from ECF to ICF.  相似文献   

5.
The aim of the study was to evaluate whether a selective increase in portal vein blood glucose concentration can affect pancreatic islet blood flow. Anesthetized rats were infused (0.1 ml/min for 3 min) directly into the portal vein with saline, glucose, or 3-O-methylglucose. The infused dose of glucose (1 mg. kg body wt(-1). min(-1)) was chosen so that the systemic blood glucose concentration was unaffected. Intraportal infusion of D-glucose increased insulin release and islet blood flow; the osmotic control substance 3-O-methylglucose had no such effect. A bilateral vagotomy performed 20 min before the infusions potentiated the islet blood flow response and also induced an increase in whole pancreatic blood flow, whereas the insulin response was abolished. Administration of atropine to vagotomized animals did not change the blood flow responses to intraportal glucose infusions. When the vagotomy was combined with a denervation of the hepatic artery, there was no stimulation of islet blood flow or insulin release after intraportal glucose infusion. We conclude that a selective increase in portal vein blood glucose concentration may participate in the islet blood flow increase in response to hyperglycemia. This effect is probably mediated via periarterial nerves and not through the vagus nerve. Furthermore, this blood flow increase can be dissociated from changes in insulin release.  相似文献   

6.
AMP-activated protein kinase (AMPK) independently increases glucose and long-chain fatty acid (LCFA) utilization in isolated cardiac muscle preparations. Recent studies indicate this may be due to AMPK-induced phosphorylation and activation of nitric oxide synthase (NOS). Given this, the aim of the present study was to assess the effects of AMPK stimulation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 10 mg.kg(-1).min(-1)) on glucose and LCFA utilization in cardiac muscle and to determine the NOS dependence of any observed effects. Catheters were chronically implanted in a carotid artery and jugular vein of Sprague-Dawley rats. After 4 days of recovery, conscious, unrestrained rats were given either water or water containing 1 mg/ml nitro-L-arginine methyl ester (L-NAME) for 2.5 days. After an overnight fast, rats underwent one of four protocols: saline, AICAR, AICAR + L-NAME, or AICAR + Intralipid (20%, 0.02 ml.kg(-1).min(-1)). Glucose was clamped at approximately 6.5 mM in all groups, and an intravenous bolus of 2-deoxy-[(3)H]glucose and [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid was administered to obtain indexes of glucose and LCFA uptake and clearance. Despite AMPK activation, as evidenced by acetyl-CoA carboxylase (Ser(221)) and AMPK phosphorylation (Thr(172)), AICAR increased cardiac LCFA but not glucose clearance. L-NAME + AICAR established that this effect was not due to NOS activation, and AICAR + Intralipid showed that increased cardiac LCFA clearance was not LCFA-concentration dependent. These results demonstrate that, in vivo, AMPK stimulation increases LCFA but not glucose clearance by a NOS-independent mechanism.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and suppresses food intake. Recent studies indicate that the hepatic vagal afferent nerve is involved in this response. Dipeptidyl peptidase-IV (DPP-IV) inhibitor extends the half-life of endogenous GLP-1 by preventing its degradation. This study aimed to determine whether DPP-IV inhibitor-induced elevation of portal GLP-1 levels affect insulin secretion and feeding behavior via the vagal afferent nerve and hypothalamus. The effect of DPP-IV inhibitor infusion into the portal vein or peritoneum on portal and peripheral GLP-1 levels, food intake, and plasma insulin and glucose was examined in sham-operated and vagotomized male Sprague-Dawley rats. Analyses of neuronal histamine turnover and immunohistochemistry were used to identify the CNS pathway that mediated the response. Intraportal administration of the DPP-IV inhibitor significantly increased portal (but not peripheral) GLP-1 levels, increased insulin levels, and decreased glucose levels. The DPP-IV inhibitor suppressed 1- and 12- but not 24-h cumulative food intake. Intraportal infusion of the DPP-IV inhibitor increased hypothalamic neuronal histamine turnover and increased c-fos expression in several areas of the brain. These responses were blocked by vagotomy. Our results indicate that DPP-IV inhibitor-induced changes in portal but not systemic GLP-1 levels affect insulin secretion and food intake. Furthermore, our findings suggest that a neuronal pathway that includes the hepatic vagal afferent nerve and hypothalamic neuronal histamine plays an important role in the pharmacological actions of DPP-IV inhibitor.  相似文献   

8.
Exposing isolated rat skeletal muscle to 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside [AICAR, a pharmacological activator of AMP-activated protein kinase (AMPK)] plus serum leads to a subsequent increase in insulin-stimulated glucose transport (Fisher JS, Gao J, Han DH, Holloszy JO, and Nolte LA. Am J Physiol Endocrinol Metab 282: E18-E23, 2002). Our goal was to determine whether preincubation of primary human skeletal muscle cells with human serum and AICAR (Serum+AICAR) would also induce a subsequent elevation in insulin-stimulated glucose uptake. Cells were preincubated for 1 h under 4 conditions: 1) without AICAR or serum (Control), 2) with serum, 3) with AICAR, or 4) with Serum+AICAR. Some cells were then collected for immunoblot analysis to assess phosphorylation of AMPK (pAMPK) and its substrate acetyl-CoA carboxylase (ACC). Other cells were incubated for an additional 4 h without AICAR or serum and then used to measure basal or insulin-stimulated 2-deoxyglucose (2-DG) uptake. Level of pAMPK was increased (P < 0.01) for myotubes exposed to Serum+AICAR vs. all other groups. Phosphorylated ACC (pACC) levels were higher for both Serum+AICAR (P < 0.05) and AICAR (P < 0.05) vs. Control and Serum groups. Basal (P < 0.05) and 1.2 nM insulin-stimulated (P < 0.005) 2-DG uptake was higher for Serum vs. all other preincubation conditions at equal insulin concentration. Regardless of insulin concentration (0, 1.2, or 18 nM), 2-DG was unaltered in cells preincubated with Serum+AICAR vs. Control cells. In contrast to results with isolated rat skeletal muscle, increasing the pAMPK and pACC in human myocytes via preincubation with Serum+AICAR was insufficient to lead to a subsequent enhancement in insulin-stimulated glucose uptake.  相似文献   

9.
To determine the role of AMP-activated protein kinase (AMPK) activation on the regulation of fatty acid (FA) uptake and oxidation, we perfused rat hindquarters with 6 mM glucose, 10 microU/ml insulin, 550 microM palmitate, and [14C]palmitate during rest (R) or electrical stimulation (ES), inducing low-intensity (0.1 Hz) muscle contraction either with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). AICAR treatment significantly increased glucose and FA uptake during R (P < 0.05) but had no effect on either variable during ES (P > 0.05). AICAR treatment significantly increased total FA oxidation (P < 0.05) during both R (0.38 +/- 0.11 vs. 0.89 +/- 0.1 nmol x min(-1) x g(-1)) and ES (0.73 +/- 0.11 vs. 2.01 +/- 0.1 nmol x min(-1) x g(-1)), which was paralleled in both conditions by a significant increase and significant decrease in AMPK and acetyl-CoA carboxylase (ACC) activity, respectively (P < 0.05). Low-intensity muscle contraction increased glucose uptake, FA uptake, and total FA oxidation (P < 0.05) despite no change in AMPK (950.5 +/- 35.9 vs. 1,067.7 +/- 58.8 nmol x min(-1) x g(-1)) or ACC (51.2 +/- 6.7 vs. 55.7 +/- 2.0 nmol x min(-1) x g(-1)) activity from R to ES (P > 0.05). When contraction and AICAR treatment were combined, the AICAR-induced increase in AMPK activity (34%) did not account for the synergistic increase in FA oxidation (175%) observed under similar conditions. These results suggest that while AMPK-dependent mechanisms may regulate FA uptake and FA oxidation at rest, AMPK-independent mechanisms predominate during low-intensity muscle contraction.  相似文献   

10.
Chronic hyperglycemia is detrimental to pancreatic beta-cells, causing impaired insulin secretion and beta-cell turnover. The characteristic secretory defects are increased basal insulin secretion (BIS) and a selective loss of glucose-stimulated insulin secretion (GSIS). Several recent studies support the view that the acetyl-CoA carboxylase (ACC) plays a pivotal role for GSIS. We have shown that stevioside (SVS) enhances insulin secretion and ACC gene expression. Whether glucotoxicity influences ACC and whether this action can be counteracted by SVS are not known. To investigate this, we exposed isolated mouse islets as well as clonal INS-1E beta-cells for 48 h to 27 or 16.7 mM glucose, respectively. We found that 48-h exposure to high glucose impairs GSIS from mouse islets and INS-1E cells, an effect that is partly counteracted by SVS. The ACC dephosphorylation inhibitor okadaic acid (OKA, 10(-8) M), and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR, 10(-4) M), an activator of 5'-AMP protein kinase that phosphorylates ACC, eliminated the beneficial effect of SVS. 5-Tetrade-cyloxy-2-furancarboxylic acid (TOFA), the specific ACC inhibitor, blocked the effect of SVS as well. During glucotoxity, ACC gene expression, ACC protein, and phosphorylated ACC protein were increased in INS-1E beta-cells. SVS pretreatment further increased ACC gene expression with strikingly elevated ACC activity and increased glucose uptake accompanied by enhanced GSIS. Our studies show that glucose is a potent stimulator of ACC and that SVS to some extent counteracts glucotoxicity via increased ACC activity. SVS possesses the potential to alleviate negative effects of glucotoxicity in beta-cells via a unique mechanism of action.  相似文献   

11.
A portal venous 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion that results in hepatic 5-aminoimidazole-4-carboxamide-1-beta-D-ribosyl-5-monophosphate (ZMP) concentrations of approximately 4 micromol/g liver increases hepatic glycogenolysis and glucose output. ZMP is an AMP analog that mimics the regulatory actions of this nucleotide. The aim of this study was to measure hepatic AMP concentrations in response to increasing energy requirements to test the hypothesis that AMP achieves concentrations during exercise, consistent with a role in stimulation of hepatic glucose metabolism. Male C57BL/6J mice (27.4+/- 0.4 g) were subjected to 35 min of rest [sedentary (SED), n=8], underwent short-term (ST, 35 min) moderate (20 m/min, 5% grade) exercise (n=8), or underwent treadmill exercise under similar conditions but until exhaustion (EXH, n=8). Hepatic AMP concentrations were 0.82+/- 0.05, 1.17+/- 0.11, and 2.52+/- 0.16 micromol/g liver in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic energy charge was 0.66+/- 0.01, 0.58+/- 0.02, and 0.33+/- 0.22 in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic glycogen was 11.6+/- 1.0, 8.8+/- 2.2, and 0.0+/- 0.1 mg/g liver in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic AMPK (Thr(172)) phosphorylation was 1.00+/- 0.14, 1.96+/- 0.16, and 7.44+/- 0.63 arbitrary units in SED, ST, and EXH mice, respectively (P< 0.05). Thus exercise increases hepatic AMP concentrations. These data suggest that the liver is highly sensitive to metabolic demands, as evidenced by dramatic changes in cellular energy indicators (AMP) and sensors thereof (AMP-activated protein kinase). In conclusion, AMP is sensitively regulated, consistent with it having an important role in hepatic metabolism.  相似文献   

12.
The role of alpha- and beta-adrenergic receptor subtypes in mediating the actions of catecholamines on hepatic glucose production (HGP) was determined in sixteen 18-h-fasted conscious dogs maintained on a pancreatic clamp with basal insulin and glucagon. The experiment consisted of a 100-min equilibration, a 40-min basal, and two 90-min test periods in groups 1 and 2, plus a 60-min third test period in groups 3 and 4. In group 1 [alpha-blockade with norepinephrine (alpha-blo+NE)], phentolamine (2 microg x kg(-1) x min(-1)) was infused portally during both test periods, and NE (50 ng x kg(-1) x min(-1)) was infused portally at the start of test period 2. In group 2, beta-blockade with epinephrine (beta-blo+EPI), propranolol (1 microg x kg(-1) x min(-1)) was infused portally during both test periods, and EPI (8 ng x kg(-1) x min(-1)) was infused portally during test period 2. In group 3 (alpha(1)-blo+NE), prazosin (4 microg x kg(-1) x min(-1)) was infused portally during all test periods, and NE (50 and 100 ng x kg(-1) x min(-1)) was infused portally during test periods 2 and 3, respectively. In group 4 (beta(2)-blo+EPI), butoxamine (40 microg x kg(-1) x min(-1)) was infused portally during all test periods, and EPI (8 and 40 ng x kg(-1) x min(-1)) was infused portally during test periods 2 and 3, respectively. In the presence of alpha- or alpha(1)-adrenergic blockade, a selective rise in hepatic sinusoidal NE failed to increase net hepatic glucose output (NHGO). In a previous study, the same rate of portal NE infusion had increased NHGO by 1.6 +/- 0.3 mg x kg(-1) x min(-1). In the presence of beta- or beta(2)-adrenergic blockade, the selective rise in hepatic sinusoidal EPI caused by EPI infusion at 8 ng x kg(-1) x min(-1) also failed to increase NHGO. In a previous study, the same rate of EPI infusion had increased NHGO by 1.6 +/- 0.4 mg x kg(-1) x min(-1). In conclusion, in the conscious dog, the direct effects of NE and EPI on HGP are predominantly mediated through alpha(1)- and beta(2)-adrenergic receptors, respectively.  相似文献   

13.
14.
Fatty acid oxidation in muscle has been reported to be diminished when insulin and glucose levels are elevated. This study was designed to determine whether activation of AMP-activated protein kinase (AMPK) will prevent inhibitory effects of insulin and glucose on the rate of fatty acid oxidation. Rat hindlimbs were perfused with medium containing 0, 0.3, or 60 nM insulin with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). Glucose uptake was stimulated four- to fivefold by inclusion of insulin in the medium. Insulin attenuated the increase in AMPK caused by AICAR both in perfused hindlimbs and in isolated epitrochlearis muscles. The activation constant for citrate activation of acetyl-CoA carboxylase (ACC) was significantly increased in response to AICAR, and the increase was slightly attenuated if insulin was present in the perfusion medium. Insulin stimulated an increase in malonyl-CoA content of the muscles in the absence of AICAR. Malonyl-CoA was decreased to approximately the same value in AICAR-perfused muscle, regardless of insulin concentration. Muscle glucose 6-phosphate and citrate were significantly increased in response to AICAR and insulin. The rate of palmitate oxidation tended to decrease in response to insulin and in the absence of AICAR. AICAR increased palmitate oxidation to approximately the same level regardless of the insulin concentration or the rate of glucose uptake into the muscle. The rate of palmitate oxidation showed a curvilinear relationship as a function of muscle malonyl-CoA content, with half-maximal inhibition at approximately 0.6 nmol/g. We conclude that AMPK activation can prevent high rates of glucose uptake and glycolytic flux from inhibiting palmitate oxidation in predominantly fast-twitch muscle under these conditions.  相似文献   

15.
In the previous study, we demonstrated that fluoxetine (FLX) regulated lipogenic and lipolytic genes to promote hepatic lipid accumulation. On this basis, underlying mechanisms were investigated by focusing on the intracellular signaling transduction in the present study using primary mouse hepatocytes. The expression of lipogenesis- and lipolysis-related genes was evaluated with the application of specific activators and inhibitors. Activation status of respective signaling pathway and the lipid accumulation in hepatocytes were analyzed. We provided evidence that AMP-activated protein kinase (AMPK) activator AICAR (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside) significantly suppressed the increased expression of representative lipogenesis-related genes, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) by FLX, while increased the repressed expression of lipolysis-related genes, carboxylesterases. In the meanwhile, FLX regulated the above genes in the same way as AMPK inhibitor Compound C did. Furthermore, AICAR inhibited the proteolytic activation of SREBP1c induced by FLX, resulting in the decreased level of nuclear SREBP1c. Further studies demonstrated that FLX significantly suppressed the phosphorylation of AMPK and subsequent phosphorylation of ACC, following the inhibited phosphorylation and nuclear export of liver kinase B1 (LKB1). As a functional analysis, FLX-induced lipid accumulation in hepatocytes was repeatedly abolished by AICAR. In conclusion, FLX-induced hepatic lipid accumulation is mediated by the suppression of AMPK signaling pathway. The findings not only provide new insight into the understanding of the mechanisms for selective serotonin reuptake inhibitors-mediated dyslipidemia effects, but also suggest a novel therapeutic target to interfere.  相似文献   

16.
To determine the role of nitric oxide in regulating net hepatic glucose uptake (NHGU) in vivo, studies were performed on three groups of 42-h-fasted conscious dogs using a nitric oxide donor [3-morpholinosydnonimine (SIN-1)]. The experimental period was divided into period 1 (0-90 min) and period 2 (P2; 90-240 min). At 0 min, somatostatin was infused peripherally, and insulin (4-fold basal) and glucagon (basal) were given intraportally. Glucose was delivered intraportally (22.2 mumol.kg(-1).min(-1)) and peripherally (as needed) to increase the hepatic glucose load twofold basal. At 90 min, an infusion of SIN-1 (4 mug.kg(-1).min(-1)) was started in a peripheral vein (PeSin-1, n = 10) or the portal vein (PoSin-1, n = 12) while the control group received saline (SAL, n = 8). Both peripheral and portal infusion of SIN-1, unlike saline, significantly reduced systolic and diastolic blood pressure. Heart rate rose in PeSin-1 and PoSin-1 (96 +/- 5 to 120 +/- 10 and 88 +/- 6 to 107 +/- 5 beats/min, respectively, P < 0.05) but did not change in response to saline. NHGU during P2 was 31.0 +/- 2.4 and 29.9 +/- 2.0 mumol.kg(-1).min(-1) in SAL and PeSin-1, respectively but was 23.7 +/- 1.7 in PoSin-1 (P < 0.05). Net hepatic carbon retention during P2 was significantly lower in PoSin-1 than SAL or PeSin-1 (21.4 +/- 1.2 vs. 27.1 +/- 1.5 and 26.1 +/- 1.0 mumol.kg(-1).min(-1)). Nonhepatic glucose uptake did not change in response to saline or SIN-1 infusion. In conclusion, portal but not peripheral infusion of the nitric oxide donor SIN-1 inhibited NHGU.  相似文献   

17.
The glycemic and hormonal responses and net hepatic and nonhepatic glucose uptakes were quantified in conscious 42-h-fasted dogs during a 180-min infusion of glucose at 10 mg. kg(-1). min(-1) via a peripheral (Pe10, n = 5) or the portal (Po10, n = 6) vein. Arterial plasma insulin concentrations were not different during the glucose infusion in Pe10 and Po10 (37 +/- 6 and 43 +/- 12 microU/ml, respectively), and glucagon concentrations declined similarly throughout the two studies. Arterial blood glucose concentrations during glucose infusion were not different between groups (125 +/- 13 and 120 +/- 6 mg/dl in Pe10 and Po10, respectively). Portal glucose delivery made the hepatic glucose load significantly greater (36 +/- 3 vs. 46 +/- 5 mg. kg(-1). min(-1) in Pe10 vs. Po10, respectively, P < 0.05). Net hepatic glucose uptake (NHGU; 1.1 +/- 0. 4 vs. 3.1 +/- 0.4 mg. kg(-1). min(-1)) and fractional extraction (0. 03 +/- 0.01 vs. 0.07 +/- 0.01) were smaller (P < 0.05) in Pe10 than in Po10. Nonhepatic (primarily muscle) glucose uptake was correspondingly increased in Pe10 compared with Po10 (8.9 +/- 0.4 vs. 6.9 +/- 0.4 mg. kg(-1). min(-1), P < 0.05). Approximately one-half of the difference in NHGU between groups could be accounted for by the difference in hepatic glucose load, with the remainder attributable to the effect of the portal signal itself. Even in the absence of somatostatin and fixed hormone concentrations, the portal signal acts to alter partitioning of a glucose load among the tissues, stimulating NHGU and reducing peripheral glucose uptake.  相似文献   

18.
Intraportal serotonin infusion enhances net hepatic glucose uptake (NHGU) during glucose infusion but blunts nonhepatic glucose uptake and can cause gastrointestinal discomfort and diarrhea at high doses. Whether the serotonin precursor 5-hydroxytryptophan (5-HTP) could enhance NHGU without gastrointestinal side effects during glucose infusion was examined in conscious 42-h-fasted dogs, using arteriovenous difference and tracer ([3-3H]glucose) techniques. Experiments consisted of equilibration (-120 to -30 min), basal (-30 to 0 min), and experimental (EXP; 0-270 min) periods. During EXP, somatostatin, fourfold basal intraportal insulin, basal intraportal glucagon, and peripheral glucose (to double the hepatic glucose load) were infused. In one group of dogs (HTP, n = 6), saline was infused intraportally from 0 to 90 min (P1), and 5-HTP was infused intraportally at 10, 20, and 40 microg x kg(-1) x min(-1) from 90 to 150 (P2), 150 to 210 (P3), and 210 to 270 (P4) min, respectively. In the other group (SAL, n = 7), saline was infused intraportally from 0 to 270 min. NHGU in SAL was 14.8 +/- 1.9, 18.5 +/- 2.3, 16.3 +/- 1.4, and 19.7 +/- 1.6 micromol x kg(-1) x min(-1) in P1-P4, whereas NHGU in 5-HTP averaged 16.4 +/- 2.6, 18.5 +/- 1.4, 20.8 +/- 2.0, and 27.6 +/- 2.6 micromol x kg(-1) x min(-1) (P < 0.05 vs. SAL). Nonhepatic glucose uptake (micromol x kg(-1) x min(-1)) in SAL was 30.2 +/- 4.3, 36.8 +/- 5.8, 44.3 +/- 5.8, and 54.6 +/- 11.8 during P1-P4, respectively, whereas in HTP the corresponding values were 26.3 +/- 6.8, 44.9 +/- 10.1, 47.5 +/- 11.7, and 51.4 +/- 13.2 (not significant between groups). Intraportal 5-HTP enhances NHGU without significantly altering nonhepatic glucose uptake or causing gastrointestinal side effects, raising the possibility that a related agent might have a role in reducing postprandial hyperglycemia.  相似文献   

19.
Angiotensin II induces cardiomyocyte hypertrophy, but its consequences on cardiomyocyte metabolism and energy supply are not completely understood. Here we investigate the effect of angiotensin II on glucose and fatty acid utilization and the modifying role of AMP-activated protein kinase (AMPK), a key regulator of metabolism and proliferation. Treatment of H9C2 cardiomyocytes with angiotensin II (Ang II, 1 microm, 4 h) increased [(3)H]leucine incorporation, up-regulated the mRNA expression of the hypertrophy marker genes MLC, ANF, BNP, and beta-MHC, and decreased the phosphorylation of the negative mTOR-regulator tuberin (TSC-2). Rat neonatal cardiomyocytes showed similar results. Western blot analysis revealed a time- and concentration-dependent down-regulation of AMPK-phosphorylation in the presence of angiotensin II, whereas the protein expression of the catalytic alpha-subunit remained unchanged. This was paralleled by membrane translocation of glucose-transporter type 4 (GLUT4), increased uptake of [(3)H]glucose and transient down-regulation of phosphorylation of acetyl-CoA carboxylase (ACC), whereas fatty acid uptake remained unchanged. Similarly, short-term transaortic constriction in mice resulted in down-regulation of P-AMPK and P-ACC but up-regulation of GLUT4 membrane translocation in the heart. Preincubation of cardiomyocytes with the AMPK stimulator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 1 mM, 4 h) completely prevented the angiotensin II-induced cardiomyocytes hypertrophy. In addition, AICAR reversed the metabolic effects of angiotensin II: GLUT4 translocation was reduced, but ACC phosphorylation and TSC phosphorylation were elevated. In summary, angiotensin II-induced hypertrophy of cardiomyocytes is accompanied by decreased activation of AMPK, increased glucose uptake, and decreased mTOR inhibition. Stimulation with the AMPK activator AICAR reverses these metabolic changes, increases fatty acid utilization, and inhibits cardiomyocyte hypertrophy.  相似文献   

20.
Glucose-sensing neurons in the ventromedial hypothalamus (VMH) are involved in the regulation of glucose homeostasis. Glucose-sensing neurons alter their action potential frequency in response to physiological changes in extracellular glucose, insulin, and leptin. Glucose-excited neurons decrease, whereas glucose-inhibited (GI) neurons increase, their action potential frequency when extracellular glucose is reduced. Central nitric oxide (NO) synthesis is regulated by changes in local fuel availability, as well as insulin and leptin. NO is involved in the regulation of food intake and is altered in obesity and diabetes. Thus this study tests the hypothesis that NO synthesis is a site of convergence for glucose, leptin, and insulin signaling in VMH glucose-sensing neurons. With the use of the NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein in conjunction with the membrane potential-sensitive dye fluorometric imaging plate reader, we found that glucose and leptin suppress, whereas insulin stimulates neuronal nitric oxide synthase (nNOS)-dependent NO production in cultured VMH GI neurons. The effects of glucose and leptin were mediated by suppression of AMP-activated protein kinase (AMPK). The AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) increased both NO production and neuronal activity in GI neurons. In contrast, the effects of insulin on NO production were blocked by the phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Furthermore, decreased glucose, insulin, and AICAR increase the phosphorylation of VMH nNOS, whereas leptin decreases it. Finally, VMH neurons express soluble guanylyl cyclase, a downstream mediator of NO signaling. Thus NO may mediate, in part, glucose, leptin, and insulin signaling in VMH glucose-sensing neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号