首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measles virus is a negative-sense, single-stranded RNA virus belonging to the Mononegavirales order which comprises several human pathogens such as Ebola, Nipah, and Hendra viruses. The phosphoprotein of measles virus is a modular protein consisting of an intrinsically disordered N-terminal domain (Karlin, D., Longhi, S., Receveur, V., and Canard, B. (2002) Virology 296, 251-262) and of a C-terminal moiety (PCT) composed of alternating disordered and globular regions. We report the crystal structure of the extreme C-terminal domain (XD) of measles virus phosphoprotein (aa 459-507) at 1.8 A resolution. We have previously reported that the C-terminal domain of measles virus nucleoprotein, NTAIL, is intrinsically unstructured and undergoes induced folding in the presence of PCT (Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S., and Canard, B. (2003) J. Biol. Chem. 278, 18638-18648). Using far-UV circular dichroism, we show that within PCT, XD is the region responsible for the induced folding of NTAIL. The crystal structure of XD consists of three helices, arranged in an anti-parallel triple-helix bundle. The surface of XD formed between helices alpha2 and alpha3 displays a long hydrophobic cleft that might provide a complementary hydrophobic surface to embed and promote folding of the predicted alpha-helix of NTAIL. We present a tentative model of the interaction between XD and NTAIL. These results, beyond presenting the first measles virus protein structure, shed light both on the function of the phosphoprotein at the molecular level and on the process of induced folding.  相似文献   

2.
The nucleoprotein of measles virus consists of an N-terminal moiety, N(CORE), resistant to proteolysis and a C-terminal moiety, N(TAIL), hypersensitive to proteolysis and not visible as a distinct domain by electron microscopy. We report the bacterial expression, purification, and characterization of measles virus N(TAIL). Using nuclear magnetic resonance, circular dichroism, gel filtration, dynamic light scattering, and small angle x-ray scattering, we show that N(TAIL) is not structured in solution. Its sequence and spectroscopic and hydrodynamic properties indicate that N(TAIL) belongs to the premolten globule subfamily within the class of intrinsically disordered proteins. The same epitopes are exposed in N(TAIL) and within the nucleoprotein, which rules out dramatic conformational changes in the isolated N(TAIL) domain compared with the full-length nucleoprotein. Most unstructured proteins undergo some degree of folding upon binding to their partners, a process termed "induced folding." We show that N(TAIL) is able to bind its physiological partner, the phosphoprotein, and that it undergoes such an unstructured-to-structured transition upon binding to the C-terminal moiety of the phosphoprotein. The presence of flexible regions at the surface of the viral nucleocapsid would enable plastic interactions with several partners, whereas the gain of structure arising from induced folding would lead to modulation of these interactions. These results contribute to the study of the emerging field of natively unfolded proteins.  相似文献   

3.
Henipaviruses are recently emerged severe human pathogens within the Paramyxoviridae family. Their genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). We have previously shown that in Henipaviruses the N protein possesses an intrinsically disordered C-terminal domain, N(TAIL), which undergoes α-helical induced folding in the presence of the C-terminal domain (P(XD)) of the P protein. Using computational approaches, we previously identified within N(TAIL) four putative molecular recognition elements (MoREs) with different structural propensities, and proposed a structural model for the N(TAIL)-P(XD) complex where the MoRE encompassing residues 473-493 adopt an α-helical conformation at the P(XD) surface. In this work, for each N(TAIL) protein, we designed four deletion constructs bearing different combinations of the predicted MoREs. Following purification of the N(TAIL) truncated proteins from the soluble fraction of E. coli, we characterized them in terms of their conformational, spectroscopic and binding properties. These studies provided direct experimental evidence for the structural state of the four predicted MoREs, and showed that two of them have clear α-helical propensities, with the one spanning residues 473-493 being strictly required for binding to P(XD). We also showed that Henipavirus N(TAIL) and P(XD) form heterologous complexes, indicating that the P(XD) binding regions are functionally interchangeable between the two viruses. By combining spectroscopic and conformational analyses, we showed that the content in regular secondary structure is not a major determinant of protein compaction.  相似文献   

4.
Using site-directed spin-labeling EPR spectroscopy, we mapped the region of the intrinsically disordered C-terminal domain of measles virus nucleoprotein (N(TAIL)) that undergoes induced folding. In addition to four spin-labeled N(TAIL) variants (S407C, S488C, L496C, and V517C) (Morin et al. (2006), J Phys Chem 110: 20596-20608), 10 new single-site cysteine variants were designed, purified from E. coli, and spin-labeled. These 14 spin-labeled variants enabled us to map in detail the gain of rigidity of N(TAIL) in the presence of either the secondary structure stabilizer 2,2,2-trifluoroethanol or the C-terminal domain X (XD) of the viral phosphoprotein. Different regions of N(TAIL) were shown to contribute to a different extent to the binding to XD, while the mobility of the spin labels grafted at positions 407 and 460 was unaffected upon addition of XD; that of the spin labels grafted within the 488-502 and the 505-522 regions was severely and moderately reduced, respectively. Furthermore, EPR experiments in the presence of 30% sucrose allowed us to precisely map to residues 488-502, the N(TAIL) region undergoing alpha-helical folding. The mobility of the 488-502 region was found to be restrained even in the absence of the partner, a behavior that could be accounted for by the existence of a transiently populated folded state. Finally, we show that the restrained motion of the 505-522 region upon binding to XD is due to the alpha-helical transition occurring within the 488-502 region and not to a direct interaction with XD.  相似文献   

5.
The Henipavirus genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). In a previous study, we reported that in henipaviruses, the N-terminal domain of the phosphoprotein and the C-terminal domain of the nucleoprotein (N(TAIL)) are both intrinsically disordered. Here we show that Henipavirus N(TAIL) domains are also disordered in the context of full-length nucleoproteins. We also report the cloning, purification, and characterization of the C-terminal X domains (P(XD)) of Henipavirus phosphoproteins. Using isothermal titration calorimetry, we show that N(TAIL) and P(XD) form a 1:1 stoichiometric complex that is stable under NaCl concentrations as high as 1 M and has a K(D) in the μM range. Using far-UV circular dichroism and nuclear magnetic resonance, we show that P(XD) triggers an increase in the α-helical content of N(TAIL). Using fluorescence spectroscopy, we show that P(XD) has no impact on the chemical environment of a Trp residue introduced at position 527 of the Henipavirus N(TAIL) domain, thus arguing for the lack of stable contacts between the C termini of N(TAIL) and P(XD). Finally, we present a tentative structural model of the N(TAIL)-P(XD) interaction in which a short, order-prone region of N(TAIL) (α-MoRE; amino acids 473-493) adopts an α-helical conformation and is embedded between helices α2 and α3 of P(XD), leading to a relatively small interface dominated by hydrophobic contacts. The present results provide the first detailed experimental characterization of the N-P interaction in henipaviruses and designate the N(TAIL)-P(XD) interaction as a valuable target for rational antiviral approaches.  相似文献   

6.
Interaction of the C-terminal domains of Sendai virus (SeV) P and N proteins is crucial for RNA synthesis by correctly positioning the polymerase complex (L+P) onto the nucleocapsid (N/RNA). To better understand this mechanism within the paramyxovirus family, we have studied the complex formed by the SeV C-terminal domains of P (PX) and N (N(TAIL)) proteins by solution nuclear magnetic resonance spectroscopy. We have characterized SeV N(TAIL), which belongs to the class of intrinsically disordered proteins, and precisely defined the binding regions within this latter domain and within PX. SeV N(TAIL) binds with residues 472 to 493, which have a helical propensity (residues 477 to 491) to the surface created by helices alpha2 and alpha3 of PX with a 1:1 stoichiometry, as was also found for measles virus (MV). The binding interface is dominated by charged residues, and the dissociation constant was determined to be 57 +/- 18 microM under conditions of the experiment (i.e., in 0.5 M NaCl). We have also shown that the extreme C terminus of SeV N(TAIL) does not interact with PX, which is in contrast to MV, where a second binding site was identified. In addition, the interaction surfaces of the MV proteins are hydrophobic and a stronger binding constant was found. This gives a good illustration of how selection pressure allowed the C-terminal domains of N and P proteins to evolve concomitantly within this family of viruses in order to lead to protein complexes having the same three-dimensional fold, and thus the same function, but with completely different binding interfaces.  相似文献   

7.
8.
9.
10.
11.
To characterize the structure of dynamic protein systems, such as partly disordered protein complexes, we propose a novel approach that relies on a combination of site-directed spin-labeled electron paramagnetic resonance spectroscopy and modeling of local rotation conformational spaces. We applied this approach to the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) both free and in complex with the X domain (XD, aa 459-507) of the viral phosphoprotein. By comparing measured and modeled temperature-dependent restrictions of the side-chain conformational spaces of 12 SL cysteine-substituted NTAIL variants, we showed that the 490-500 region of NTAIL is prestructured in the absence of the partner, and were able to quantitatively estimate, for the first time to our knowledge, the extent of the α-helical sampling of the free form. In addition, we showed that the 505-525 region of NTAIL conserves a significant degree of freedom even in the bound form. The latter two findings provide a mechanistic explanation for the reported rather high affinity of the NTAIL-XD binding reaction. Due to the nanosecond timescale of X-band EPR spectroscopy, we were also able to monitor the disordering in the 488-525 region of NTAIL, in particular the unfolding of the α-helical region when the temperature was increased from 281 K to 310 K.  相似文献   

12.
The mechanism of interaction of an intrinsically disordered protein (IDP) with its physiological partner is characterized by a disorder-to-order transition in which a recognition and a binding step take place. Even if the mechanism is quite complex, IDPs tend to bind their partner in a cooperative manner such that it is generally possible to detect experimentally only the disordered unbound state and the structured complex. The interaction between the disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein allows us to detect and quantify the two distinct steps of the overall reaction. Here, we analyze the robustness of the folding of NTAIL upon binding to XD by measuring the effect on both the folding and binding steps of NTAIL when the structure of XD is modified. Because it has been shown that wild-type XD is structurally heterogeneous, populating an on-pathway intermediate under native conditions, we investigated the binding to 11 different site-directed variants of NTAIL of one particular variant of XD (I504A XD) that populates only the native state. Data reveal that the recognition and the folding steps are both affected by the structure of XD, indicating a highly malleable pathway. The experimental results are briefly discussed in the light of previous experiments on other IDPs.  相似文献   

13.
Four single-cysteine variants of the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) were cyanylated at cysteine and their infrared spectra in the C≡N stretching region were recorded both in the absence and in the presence of one of the physiological partners of NTAIL, namely the C-terminal X domain (XD) of the viral phosphoprotein. Consistent with previous studies showing that XD triggers a disorder-to-order transition within NTAIL, the C≡N stretching bands of the infrared probe were found to be significantly affected by XD, with this effect being position-dependent. When the cyanylated cysteine side chain is solvent-exposed throughout the structural transition, its changing linewidth reflects a local gain of structure. When the probe becomes partially buried due to binding, its frequency reports on the mean hydrophobicity of the microenvironment surrounding the labeled side chain of the bound form. The probe moiety is small compared to other common covalently attached spectroscopic probes, thereby minimizing possible steric hindrance/perturbation at the binding interface. These results show for the first time to our knowledge the suitability of site-specific cysteine mutagenesis followed by cyanylation and infrared spectroscopy to document structural transitions occurring within intrinsically disordered regions, with regions involved in binding and folding being identifiable at the residue level.  相似文献   

14.
The intrinsically disordered C‐terminal domain (NTAIL) of the measles virus (MeV) nucleoprotein undergoes α‐helical folding upon binding to the C‐terminal X domain (XD) of the phosphoprotein. The NTAIL region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489–506. In the previous studies published in this journal, we obtained experimental evidence supporting a KD for the NTAIL–XD binding reaction in the nM range and also showed that an additional NTAIL region (Box3, aa 517–525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (KD in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re‐evaluate the role of Box3 in NTAIL–XD binding. Since our previous studies relied on NTAIL‐truncated forms possessing an irrelevant Flag sequence appended at their C‐terminus, we, herein, generated an NTAIL devoid of Box3 and any additional C‐terminal residues, as well as a form encompassing only residues 482–525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these NTAIL forms. Results effectively argue for the presence of a single XD‐binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high‐affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point.  相似文献   

15.
We previously documented condensation of the H1 CTD consistent with adoption of a defined structure upon nucleosome binding using a bulk FRET assay, supporting proposals that the CTD behaves as an intrinsically disordered domain. In the present study, by determining the distances between two different pairs of sites in the C-terminal domain of full length H1 by FRET, we confirm that nucleosome binding directs folding of the disordered H1 C-terminal domain and provide additional distance constraints for the condensed state. In contrast to nucleosomes, FRET observed upon H1 binding to naked DNA fragments includes both intra- and inter-molecular resonance energy transfer. By eliminating inter-molecular transfer, we find that CTD condensation induced upon H1-binding naked DNA is distinct from that induced by nucleosomes. Moreover, analysis of fluorescence quenching indicates that H1 residues at either end of the CTD experience distinct environments when bound to nucleosomes, and suggest that the penultimate residue in the CTD (K195) is juxtaposed between the two linker DNA helices, proposed to form a stem structure in the H1-bound nucleosome.  相似文献   

16.
Sato S  Luisi DL  Raleigh DP 《Biochemistry》2000,39(16):4955-4962
The folding kinetics of the multidomain ribosomal protein L9 were studied using pH jump stopped-flow fluorescence and circular dichroism (CD) in conjunction with guanidine hydrochloride (GdnHCl) jump stopped-flow CD experiments. Equilibrium CD and 1D (1)H NMR measurements demonstrated that the C-terminal domain unfolds below pH 4 while the N-terminal domain remains fully folded. Thus, the N-terminal domain remains folded during the pH jump experiments. The folding rate constant of the C-terminal domain was determined to be 3.5 s(-1) by pH jump experiments conducted in the absence of denaturant using stopped-flow CD and fluorescence. CD-detected GdnHCl jump measurements showed that the N- and C-terminal domains fold independently each by an apparent two-state mechanism. The folding rate constant for the N-terminal domain and the C-terminal domain in the absence of denaturant were calculated to be 760 and 4. 7 s(-1), respectively. The good agreement between the pH jump and the denaturant concentration jump experiments shows that the folding rate of the C-terminal domain is the same whether or not the N-terminal domain is folded. This result suggests that the slow folding of the C-terminal domain is not a consequence of unfavorable interactions with the rest of the protein chain during refolding. This is an interesting result since contact order analysis predicts that the folding rate of the C-terminal domain should be noticeably faster. The folding rate of the isolated N-terminal domain was also measured by stopped-flow CD and was found to be the same as the rate for the domain in the intact protein.  相似文献   

17.
18.
In this paper we investigate the interaction between the C-terminal domains of the measles virus phosphoprotein (XD) and nucleoprotein (NTAIL) by using nuclear magnetic resonance chemical shift perturbation experiments. Using both NTAIL constructs and peptides, we show that contrary to the conserved Box2 region (N489-506), the C-terminal region of NTAIL (N513-525) does not directly interact with XD, and yet affects binding to XD. We tentatively propose a model where the C-terminus of NTAIL would stabilize the NTAIL-XD complex either via a functional coupling with N489-506 or by reducing the entropic penalty associated to the binding-coupled-to-folding process.

Structured summary

MINT-7009780, MINT-7009793, MINT-7009808: N-tail (uniprotkb:Q89933) and P (uniprotkb:P03422) bind (MI:0407) by nuclear magnetic resonance (MI:0077)  相似文献   

19.
The three-dimensional solution structure of a 51-residue synthetic peptide comprising the dihydrolipoamide dehydrogenase (E3)-binding domain of the dihydrolipoamide succinyltransferase (E2) core of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli has been determined by nuclear magnetic resonance spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure is based on 630 approximate interproton distance and 101 torsion angle (phi, psi, chi 1) restraints. A total of 56 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions for residues 12-48 of the synthetic peptide is 1.24 A for the backbone atoms, 1.68 A for all atoms, and 1.33 A for all atoms excluding the six side chains which are disordered at chi 1 and the seven which are disordered at chi 2; when the irregular partially disordered loop from residues 31 to 39 is excluded, the rms distribution drops to 0.77 A for the backbone atoms, 1.55 A for all atoms, and 0.89 A for ordered side chains. Although proton resonance assignments for the N-terminal 11 residues and the C-terminal 3 residues were obtained, these two segments of the polypeptide are disordered in solution as evidenced by the absence of nonsequential nuclear Overhauser effects. The solution structure of the E3-binding domain consists of two parallel helices (residues 14-23 and 40-48), a short extended strand (24-26), a five-residue helical-like turn, and an irregular (and more disordered) loop (residues 31-39). This report presents the first structure of an E3-binding domain from a 2-oxo acid dehydrogenase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Intrinsically disordered proteins (IDPs) recognize their partners through molecular recognition elements (MoREs). The MoRE of the C-terminal intrinsically disordered domain of the measles virus nucleoprotein (NTAIL) is partly pre-configured as an α-helix in the free form and undergoes α-helical folding upon binding to the X domain (XD) of the viral phosphoprotein. Beyond XD, NTAIL also binds the major inducible heat shock protein 70 (hsp70). So far, no structural information is available for the NTAIL/hsp70 complex. Using mutational studies combined with a protein complementation assay based on green fluorescent protein reconstitution, we have investigated both NTAIL/XD and NTAIL/hsp70 interactions. Although the same NTAIL region binds the two partners, the binding mechanisms are different. Hsp70 binding is much more tolerant of MoRE substitutions than XD, and the majority of substitutions lead to an increased NTAIL/hsp70 interaction strength. Furthermore, while an increased and a decreased α-helicity of the MoRE lead to enhanced and reduced interaction strength with XD, respectively, the impact on hsp70 binding is negligible, suggesting that the MoRE does not adopt an α-helical conformation once bound to hsp70. Here, by showing that the α-helical conformation sampled by the free form of the MoRE does not systematically commit it to adopt an α-helical conformation in the bound form, we provide an example of partner-mediated polymorphism of an IDP and of the relative insensitiveness of the bound structure to the pre-recognition state. The present results therefore contribute to shed light on the molecular mechanisms by which IDPs recognize different partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号