首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DGKgamma (diacylglycerol kinase gamma) was reported to interact with beta2-chimaerin, a GAP (GTPase-activating protein) for Rac, in response to epidermal growth factor. Here we found that PMA and H2O2 also induced the interaction of DGKgamma with beta2-chimaerin. It is noteworthy that simultaneous addition of PMA and H2O2 synergistically enhanced the interaction. In this case, PMA was replaceable by DAG (diacylglycerol). The beta2-chimaerin translocation from the cytoplasm to the plasma membrane caused by PMA plus H2O2 was further enhanced by the expression of DGKgamma. Moreover, DGKgamma apparently enhanced the beta2-chimaerin GAP activity upon cell stimulation with PMA. PMA was found to be mainly required for a conversion of beta2-chimaerin into an active form. On the other hand, H2O2 was suggested to induce a release of Zn2+ from the C1 domain of beta2-chimaerin. By stepwise deletion analysis, we demonstrated that the SH2 (Src homology 2) and C1 domains of beta2-chimaerin interacted with the N-terminal half of catalytic region of DGKgamma. Unexpectedly, the SH2 domain of beta2-chimaerin contributes to the interaction independently of phosphotyrosine. Taken together, these results suggest that the functional link between DGKgamma and beta2-chimaerin has a broad significance in response to a wide range of cell stimuli. Our work offers a novel mechanism of protein-protein interaction, that is, the phosphotyrosine-independent interaction of the SH2 domain acting in co-operation with the C1 domain.  相似文献   

2.
Kang DH  Lee DJ  Lee KW  Park YS  Lee JY  Lee SH  Koh YJ  Koh GY  Choi C  Yu DY  Kim J  Kang SW 《Molecular cell》2011,44(4):545-558
Cellular antioxidant enzymes play crucial roles in aerobic organisms by eliminating detrimental oxidants and maintaining the intracellular redox homeostasis. Therefore, the function of antioxidant enzymes is inextricably linked to the redox-dependent activities of multiple proteins and signaling pathways. Here, we report that the VEGFR2 RTK has an oxidation-sensitive cysteine residue whose reduced state is preserved specifically by peroxiredoxin II (PrxII) in vascular endothelial cells. In the absence of PrxII, the cellular H(2)O(2) level is markedly increased and the VEGFR2 becomes inactive, no longer responding to VEGF stimulation. Such VEGFR2 inactivation is due to the formation of intramolecular disulfide linkage between Cys1199 and Cys1206 in the C-terminal tail. Interestingly, the PrxII-mediated VEGFR2 protection is achieved by association of two proteins in the caveolae. Furthermore, PrxII deficiency suppresses tumor angiogenesis in vivo. This study thus demonstrates a physiological function of PrxII as the residential antioxidant safeguard specific to the redox-sensitive VEGFR2.  相似文献   

3.
Oxidative stress or signaling is widely implicated in apoptosis, ischemia and mitogenesis. Previously, our group reported that the hydrogen peroxide (H2O2)-dependent activation of phospholipase D2 (PLD2) in PC12 cells is involved in anti-apoptotic effect. However, the precise mechanism of PLD2 activation by H2O2 was not revealed. To find H2O2-dependent PLD2-regulating proteins, we immunoprecipitated PLD2 from PC12 cells and found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) coimmunoprecipitated with PLD2 upon H2O2 treatment. This interaction was found to be direct by in vitro reconstitution of purified GAPDH and PLD2. In vitro studies also indicated that PLD2-associated GAPDH was modified on its reactive cysteine residues. Koningic acid, an alkylator of GAPDH on catalytic cysteine residue, also increased interaction between the two proteins in vitro and enhanced PLD2 activity in PC12 cells. Blocking H2O2-dependent modification of GAPDH with 3-aminobenzamide resulted in the inhibition of the GAPDH/PLD2 interaction and attenuated H2O2-induced PLD2 activation in PC12 cells. From the results, we suggest that H2O2 modifies GAPDH on its catalytic cysteine residue not only to inactivate the dehydrogenase activity of GAPDH but also to endow GAPDH with the ability to bind PLD2 and the resulting association is involved in the regulation of PLD2 activity by H2O2.  相似文献   

4.
Reactive oxygen species (ROS) are produced in plants under various stress conditions and serve as important mediators in plant responses to stresses. Here, we show that the cytosolic glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenases (GAPCs) interact with the plasma membrane-associated phospholipase D (PLDδ) to transduce the ROS hydrogen peroxide (H(2)O(2)) signal in Arabidopsis thaliana. Genetic ablation of PLDδ impeded stomatal response to abscisic acid (ABA) and H(2)O(2), placing PLDδ downstream of H(2)O(2) in mediating ABA-induced stomatal closure. To determine the molecular link between H(2)O(2) and PLDδ, GAPC1 and GAPC2 were identified to bind to PLDδ, and the interaction was demonstrated by coprecipitation using proteins expressed in Escherichia coli and yeast, surface plasmon resonance, and bimolecular fluorescence complementation. H(2)O(2) promoted the GAPC-PLDδ interaction and PLDδ activity. Knockout of GAPCs decreased ABA- and H(2)O(2)-induced activation of PLD and stomatal sensitivity to ABA. The loss of GAPCs or PLDδ rendered plants less responsive to water deficits than the wild type. The results indicate that the H(2)O(2)-promoted interaction of GAPC and PLDδ may provide a direct connection between membrane lipid-based signaling, energy metabolism and growth control in the plant response to ROS and water stress.  相似文献   

5.
In this study, we have explored the roles of ADP-ribosylation factors (ARFs), phospholipase D (PLD) isozymes, and arfaptins in phorbol ester (PMA)-induced membrane ruffling in HeLa cells. PMA stimulation induced ruffling and translocated cortactin to the plasma membrane. The cortactin translocation was inhibited by dominant negative (DN)-ARF6, DN-ARF1, and DN-Rac1, but not by DN-RhoA and DN-Cdc42. The inability of DN-forms of ARF6, ARF1, and Rac1 to affect PLD activity in response to PMA indicated that this enzyme was not activated via these small G proteins and that its activation was not essential for the induction of ruffling. Endogenous-ARF1, -ARF6, and -Rac1 existed in the ruffling region along with cortactin after PMA stimulation. DN-ARF1 had no effect on the ruffling induced by DA-ARF6 or DA-Rac1, and DN-ARF6 had no effect on that induced by DA-ARF1 or DA-Rac1. On the other hand DN-Rac1 suppressed the effect of DA-ARF6 but not that of DA-ARF1. These results suggest that PMA causes membrane ruffling via an ARF6-Rac1 pathway and also an ARF1 pathway operating in parallel. Overexpression of PLD1 and PLD2 inhibited PMA-induced cortactin translocation and actin-cortactin complex formation, supporting the view that these enzymes are not required for ruffling, but actually suppress it. We conclude that PMA-induced membrane ruffling is caused via ARF6-Rac1 and ARF1 pathways operating in parallel and that PLD may be inhibitory.  相似文献   

6.
Phospholipase D (PLD) activity can be detected in response to many agonists in most cell types; however, the pathway from receptor occupation to enzyme activation remains unclear. In vitro PLD1b activity is phosphatidylinositol 4,5-bisphosphate dependent via an N-terminal PH domain and is stimulated by Rho, ARF, and PKC family proteins, combinations of which cooperatively increase this activity. Here we provide the first evidence for the in vivo regulation of PLD1b at the molecular level. Antigen stimulation of RBL-2H3 cells induces the colocalization of PLD1b with Rac1, ARF6, and PKCalpha at the plasma membrane in actin-rich structures, simultaneously with cooperatively increasing PLD activity. Activation is both specific and direct because dominant negative mutants of Rac1 and ARF6 inhibit stimulated PLD activity, and surface plasmon resonance reveals that the regulatory proteins bind directly and independently to PLD1b. This also indicates that PLD1b can concurrently interact with a member from each regulator family. Our results show that in contrast to PLD1b's translocation to the plasma membrane, PLD activation is phosphatidylinositol 3-kinase dependent. Therefore, because inactive, dominant negative GTPases do not activate PLD1b, we propose that activation results from phosphatidylinositol 3-kinase-dependent stimulation of Rac1, ARF6, and PKCalpha.  相似文献   

7.
Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of phosphatidic acid (PA), which is itself a source of diacylglycerol (DAG). These two versatile lipid second messengers are at the centre of a phospholipid signalling network and as such are involved in several cellular functions. However, their role in T-cell activation and functions are still enigmatic. In order to elucidate this role, we generated a human and a murine T-cell line that stably overexpressed the PLD2 isoform. Analysis of the Ras-MAPK pathway upon phorbol myristate acetate (PMA) and ionomycin stimulation revealed that PLD2 promoted an early and sustained increase in ERK1/2 phosphorylation in both cell lines. This response was inhibited by 1-butanol, a well known distracter of PLD activity, or upon overexpression of a dominant negative PLD2, and it was concomitant with a boost of PA/DAG production. As a functional consequence of this PLD2-dependent MAPK activation, interleukin-2 production evoked by PMA/ionomycin stimulation or CD3/CD28 engagement was enhanced in the two T-cell lines overexpressing PLD2. Thus, PLD2 emerged as an early player upstream of the Ras-MAPK-IL-2 pathway in T-cells via PA and DAG production, raising new possibilities of pharmacological manipulation in immune disorders.  相似文献   

8.
9.
Regulation of phospholipase D2 activity by protein kinase C alpha   总被引:1,自引:0,他引:1  
It has been well documented that protein kinase C (PKC) plays an important role in regulation of phospholipase D (PLD) activity. Although PKC regulation of PLD1 activity has been studied extensively, the role of PKC in PLD2 regulation remains to be established. In the present study it was demonstrated that phorbol 12-myristate 13-acetate (PMA) induced PLD2 activation in COS-7 cells. PLD2 was also phosphorylated on both serine and threonine residues after PMA treatment. PKC inhibitors Ro-31-8220 and bisindolylmaleimide I inhibited both PMA-induced PLD2 phosphorylation and activation. However, G? 6976, a PKC inhibitor relatively specific for conventional PKC isoforms, almost completely abolished PLD2 phosphorylation by PMA but only slightly inhibited PLD2 activation. Furthermore, time course studies showed that phosphorylation of PLD2 lagged behind its activation by PMA. Concentration curves for PMA action on PLD2 phosphorylation and activation also showed that PLD2 was activated by PMA at concentrations at which PMA didn't induce phosphorylation. A kinase-deficient mutant of PKCalpha stimulated PLD2 activity to an even higher level than wild type PKCalpha. Co-expression of wild type PKCalpha, but not PKCdelta, greatly enhanced both basal and PMA-induced PLD2 phosphorylation. A PKCdelta-specific inhibitor, rottlerin, failed to inhibit PMA-induced PLD2 phosphorylation and activation. Co-immunoprecipitation studies indicated an association between PLD2 and PKCalpha under basal conditions that was further enhanced by PMA. Time course studies of the effects of PKCalpha on PLD2 showed that as the phosphorylation of PLD2 increased, its activity declined. In summary, the data demonstrated that PLD2 is activated and phosphorylated by PMA and PKCalpha in COS-7 cells. However, the phosphorylation is not required for PKCalpha to activate PLD2. It is suggested that interaction rather than phosphorylation underscores the activation of PLD2 by PKC in vivo and that phosphorylation may contribute to the inactivation of the enzyme.  相似文献   

10.
The C3H/10T1/2 Cl8 HAbetaC2-1 cells used in this study express a peptide with a sequence shown to bind receptor for activated C-kinase (RACK1) and inhibit cPKC-mediated cell functions. Phorbol myristoyl acetate (PMA) strongly stimulated phosphatidylcholine (PtdCho)-specific phospholipase D (PLD) activity in the C3H/10T1/2 Cl8 parental cell line, but not in Cl8 HAbetaC2-1 cells, indicating that full PLD activity in PMA-treated Cl8 cells is dependent on a functional interaction of alpha/betaPKC with RACK1. In contrast, the PMA-stimulated uptake of choline and its subsequent incorporation into PtdCho, were not inhibited in Cl8 HAbetaC2-1 cells as compared to Cl8 cells, indicating a RACK1-independent but PKC-mediated process. Increased incorporation of labelled choline into PtdCho upon PMA treatment was not associated with changes of either CDP-choline: 1,2-diacylglycerol cholinephosphotransferase activity or the CTP:phosphocholine cytidylyltransferase distribution between cytosol and membrane fractions in Cl8 and Cl8 HAbetaC2-1 cells. The major effect of PMA on the PtdCho synthesis in C3H/10T1/2 fibroblasts was to increase the cellular uptake of choline. As a supporting experiment, we inhibited PMA-stimulated PtdH formation by PLD, and also putatively PtdH-derived DAG, in Cl8 cells with 1-butanol. Butanol did not influence the incorporation of [(14)C]choline into PtdCho. The present study shows: (1) PMA-stimulated PLD activity is dependent on a functional interaction between alpha/betaPKC and RACK1 in C3H/10T1/2 Cl8 fibroblasts; and (2) inhibition of PLD activity and PtdH formation did not reduce the cellular uptake and incorporation of labelled choline into PtdCho, indicating that these processes are not directly regulated by PtdCho-PLD activity in PMA-treated C3H/10T1/2 Cl8 fibroblasts.  相似文献   

11.
Phospholipase D2 directly interacts with aldolase via Its PH domain   总被引:2,自引:0,他引:2  
Kim JH  Lee S  Kim JH  Lee TG  Hirata M  Suh PG  Ryu SH 《Biochemistry》2002,41(10):3414-3421
Mammalian phospholipase D (PLD) has been implicated in the cellular signal transduction pathways leading to diverse physiological events and known to be regulated by many cellular factors. To identify the proteins that interact with PLD, we performed a protein overlay assay with fractions obtained from the sequential column chromatographic separation of rat brain cytosol using purified PLD2 as a probe. A protein of molecular mass 40 kDa, which was detected by anti-PLD antibody with overlaying of the purified PLD2, is shown to be aldolase C by peptide-mass fingerprinting with matrix-assisted laser desorption/ionization-time-of flight mass spectrometry (MALDI-TOF-MS). Aldolase A also showed similar binding properties as aldolase C and was co-immunoprecipitated with PLD2 in COS-7 cells overexpressing PLD2 and aldolase A. The PH domain corresponding to amino acids 201-310 of PLD2 was necessary for the interaction observed in vitro, and aldolase A was found to interact with the PH domain of PLD2 specifically, but not with other PH domains. PLD2 activity was inhibited by the presence of purified aldolase A in a dose-dependent manner, and the inhibition by 50% was observed by the addition of less than micromolar aldolase A. Moreover, the inclusion of the aldolase metabolites fructose 1,6-bisphosphate (F-1,6-P) or glyceraldehyde 3-phosphate (G-3-P) resulted in an enhanced interaction between PLD2 and aldolase A with a concomitant increase in the potential ability of aldolase A to inhibit PLD2, which suggests the existence of a possible regulation of the interaction by the change of intracellular concentrations of glycolytic metabolites.  相似文献   

12.
In the present study, we first investigated which of the factors, protein kinase C (PKC) or Ca2+, plays an important role in activation of phospholipase D (PLD) of rabbit peritoneal neutrophils stimulated by the chemoattractant FMLP. PLD activity was assessed by measuring [3H]phosphatidylethanol ([3H]PEt), the unambiguous marker of PLD, generated by [3H]lyso platelet-activating factor-prelabeled neutrophils in the presence of ethanol. PKC inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl-2-methylpiperazine dihydrochloride, augmented the plateau level of [3H]PEt produced in FMLP-stimulated cells, although they had no effect on the initial rate of the formation. Furthermore, it was found that the FMLP-stimulated [3H]PEt formation was inhibited by pretreatment of cells with PMA, a PKC activator, and exposure of cells to staurosporine before PMA pretreatment moderately blocked the PMA inhibition. Ca2+ ionophore ionomycin, as well as FMLP, stimulated [3H]PEt formation, accompanied by a decrease in [3H]phosphatidylcholine, in a time- and concentration-dependent manner. Both FMLP and ionomycin absolutely required extracellular Ca2+ to increase [3H]PEt formation. These results imply that elevated intercellular Ca2+ by FMLP stimulation is the major factor for PLD activation and that PKC rather negatively regulates the enzyme activity. Interestingly, a calmodulin inhibitor, N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide, and a myosin L chain kinase inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-1H-h exahydro-1,4-diazepine hydrochloride, both inhibited the ionomycin- and FMLP-stimulated [3H]PEt formation in a concentration-dependent manner. Results obtained in this study suggest that, in FMLP-stimulated rabbit peritoneal neutrophils, increased intracellular Ca2+ activates PLD through calmodulin/myosin L chain kinase pathway and, thereafter, the enzyme activation is turned off by simultaneously activated PKC.  相似文献   

13.
Utilizing the transphosphatidylation reaction catalyzed by phospholipase D (PLD) in the presence of a primary alcohol and the short-chain phospholipid PC8, we have characterized the enzyme from human neutrophils. A pH optimum of 7.8-8.0 was determined. PIP(2), EDTA/EGTA, and ATP were found to enhance basal PLD activity in vitro. Inhibitory elements were: oleate, Triton X-100, n-octyl-beta-glucopyranoside, divalent cations, GTPgammaS and H(2)O(2). The apparent K(m) for the butanol substrate was 0.1 mM and the V(max) was 6.0 nmol mg(-1) h(-1). Immunochemical analysis by anti-pan PLD antibodies revealed a neutrophil PLD of approximately 90 kDa and other bands recognized minimally by anti-PLD1 or anti-PLD2 antibodies. The 90-kDa protein is tyrosine-phosphorylated upon cell stimulation with GM-CSF and formyl-Met-Leu-Phe. Protein partial purification using column liquid chromatography was performed after cell subfractionation. Based on the enzyme's regulatory and inhibitory factors, and its molecular weight, these data indicate an enzyme isoform that might be different from the mammalian PLD1/2 forms described earlier. The present results lay the foundation for further purification of this granulocyte PLD isoform.  相似文献   

14.
Mammalian phospholipase D (PLD) has been reported to be a key enzyme for epidermal growth factor (EGF)-induced cellular signaling, however, the regulatory mechanism of PLD is still unclear. In this report, we found that Munc-18-1 is a potent negative regulator of PLD in the basal state and that its inhibition is abolished by EGF stimulation. We investigated PLD-binding proteins obtained from rat brain extract, and identified a 67-kDa protein as Munc-18-1 by peptide-mass finger-printing. The direct association between PLD and Munc-18-1 was confirmed by in vitro binding analysis using the purified proteins, and their binding sites were identified as the phox homology domain of PLD and multiple sites of Munc-18-1. PLD activity was potently inhibited by Munc-18-1 in vitro (IC50 = 2-5 nm), and the cotransfection of COS-7 cells with Munc-18-1 and PLD inhibited basal PLD activity in vivo. In the basal state, Munc-18-1 coprecipitated with PLD and colocalized with PLD2 at the plasma membrane of COS-7 cells. EGF treatment triggered the dissociation of Munc-18-1 from PLD when PLD was activated by EGF. The dissociation of the endogenous interaction between Munc-18-1 and PLD, and the activation of PLD by EGF were also observed in primary cultured chromaffin cells. These results suggest that Munc-18-1 is a potent negative regulator of basal PLD activity and that EGF stimulation abolishes this interaction.  相似文献   

15.
Phospholipase D (PLD) is a widely distributed enzyme that is under elaborate control by hormones, neurotransmitters, growth factors and cytokines in mammalian cells. Protein kinase C (PKC) plays a major role in the regulation of the PLD1 isozyme through interaction with its N-terminus. PKC activates this isozyme by a non-phosphorylation mechanism in vitro, but phosphorylation plays a role in the action of PKC on the enzyme in vivo. Although PLD1 can be phosphorylated by PKC in vitro, it is unclear that this occurs in vivo. Small GTPases of the ADP-ribosylation factor (ARF) and Rho families directly activate PLD1 in vitro and there is evidence that Rho proteins are involved in agonist regulation of PLD1 in vivo. ARF proteins stimulate PLD activity in the Golgi apparatus, but the role of these proteins in agonist regulation of the enzyme is less clear. PLD1 undergoes tyrosine phosphorylation in response to H(2)O(2) treatment of cells. The functional consequence of this phosphorylation and soluble tyrosine kinase(s) involved are presently unknown.  相似文献   

16.
We have investigated the coupling of muscarinic acetylcholine receptors (mAChR) to phospholipid hydrolysis in a human neuroblastoma cell line, LA-N-2, by measuring the formation of 3H-inositol phosphates (3H-IP) and of [3H]phosphatidylethanol ([3H]PEt) in cells prelabeled with [3H]inositol and [3H]oleic acid. The muscarinic agonist carbachol (CCh) stimulated the phospholipase C (PLC)-mediated formation of 3H-IP in a time- and dose-dependent manner (EC50 = 40-55 microM). In addition, in the presence of ethanol (170-300 mM), CCh elevated levels of [3H]PEt [which is regarded as a specific indicator of phospholipase D (PLD) activity] by three- to sixfold. The effect of CCh on PEt formation also was dose dependent (EC50 = 50 microM). Both effects of CCh were antagonized by atropine, indicating that they were mediated by mAChR. Incubation of LA-N-2 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA, 0.1 microM; 10 min) increased [3H]PEt levels by up to 10-fold. This effect was inhibited by the protein kinase C (PKC) inhibitor staurosporine (1 microM) or by pretreatment for 24 h with 0.1 microM PMA, by 74% and 65%, respectively. In contrast, the effect of CCh on PEt accumulation was attenuated by only 28% in the presence of staurosporine (1 microM). In summary, these results suggest that, in LA-N-2 neuroblastoma cells, mAChR are coupled both to phosphoinositide-specific PLC and to PLD. PKC is capable of stimulating PLD activity in these cells; however, it is not required for stimulation of the enzyme by mAChR activation.  相似文献   

17.
A real-time study of the initiation of the respiratory burst in human neutrophils was made. The cells were stimulated with fMet-Leu-Phe (fMLP) C5a, platelet-activating factor, leukotriene B4, phorbol myristate acetate (PMA), or ionomycin, and H2O2 production was determined by chemiluminescence. Identical average onset times (2.4 s) and closely comparable values for the apparent first-order rate constant (kapp) for the induction of NADPH-oxidase activity (0.21-0.29 s-1) were obtained following stimulation with fMLP, C5a, platelet-activating factor, or leukotriene B4, suggesting that different agonists act through a common transduction sequence. Much longer onset times and lower kapp values were obtained upon stimulation with PMA or ionomycin. Pretreatment with PMA consistently shortened the onset time of the neutrophil's responses to agonists by about 1 s. When H2O2 production was initiated with PMA, a subsequent stimulation with the agonist fMLP elicited an immediate response (onset time less than 0.2 s) which preceded further changes in fura-2-detected [Ca2+]i. The results are consistent with a mechanism in which agonist signals appear to be transduced by two sequences acting in concert--a rate-limiting one liberating Ca2+ and diacylglycerol and turning on the Ca2+/phospholipid-dependent enzyme protein kinase C, and an essentially instantaneous one which does not appear to require further changes in cytosolic Ca2+.  相似文献   

18.
Bradykinin (BK) and phorbol 12-myristate 13-acetate (PMA) both stimulate the hydrolysis of phosphatidylcholine (PC) in human fibroblasts, resulting in the formation of phosphatidic acid (PA) and diacylglycerol (DG) (Van Blitterswijk, W.J., Hilkmann, H., de Widt, J., and Van der Bend, R.L. (1990) J. Biol. Chem. 266, 10337-10343). Stimulation with BK resulted in the rapid and synchronous formation of [3H]choline and [3H]myristoyl-PA from the correspondingly prelabeled PC, indicative of phospholipase D (PLD) activity. In the presence of ethanol or n-butanol, transphosphatidylation by PLD resulted in the formation of [3H]phosphatidylethanol or - butanol, respectively, at the cost of PA and DG formation. This suggests that PC-derived DG is generated via a PLD/PA phosphohydrolase pathway. A more pronounced but delayed formation of these products was observed by PMA stimulation. The Ca2+ ionophore ionomycin also activated PLD and accelerated (synergized) the response to PMA. Both [3H] choline and [3H]phosphocholine were released into the extracellular medium in a time- and stimulus-dependent fashion, without apparent changes in the high intracellular levels of [3H]phosphocholine. The protein kinase C (PKC) inhibitors staurosporin and 1-O-hexadecyl-2-O-methylglycerol inhibited BK- and PMA-induced activation of PLD. Down-regulation of PKC by long-term pretreatment of cells with phorbol ester caused a dramatic drop in background [3H]choline levels, while subsequent stimulation with BK, ionomycin, or PMA failed to increase these levels and failed to induce transphosphatidylation. From these results we conclude that PLD activation is entirely mediated by (downstream of) PKC. Unexpectedly, however, BK stimulation of these PKC-depleted cells caused a marked generation of DG from PC within 15 s, which was not seen in BK-stimulated control cells, suggesting PC breakdown by a phospholipase C (PLCc). We conclude that cells stimulated with BK generate DG via both the PLCc and the PLD/PA hydrolase pathway, whereas PMA stimulates mainly the latter pathway. BK stimulation of normal cells leads to activation of PKC and, by consequence, to attenuation of the level of PLCc-generated DG and to stimulation of the PLD pathway, whereas the reverse occurs in PKC-down-regulated cells.  相似文献   

19.
Phospholipase D (PLD) has been implicated in the signal transduction pathways initiated by several mitogenic protein tyrosine kinases. We demonstrate for the first time that most notably PLD2 and to a lesser extent the PLD1 isoform are tyrosine phosphorylated by c-Src tyrosine kinase via direct association. Moreover, epidermal growth factor induced tyrosine phosphorylation of PLD2 and its interaction with c-Src in A431 cells. Interaction between these proteins is via the pleckstrin homology domain of PLD2 and the catalytic domain of c-Src. Coexpression of PLD1 or PLD2 with c-Src synergistically enhances cellular proliferation compared with expression of either molecule. While PLD activity as a lipid-hydrolyzing enzyme is not affected by c-Src, wild-type PLDs but not catalytically inactive PLD mutants significantly increase c-Src kinase activity, up-regulating c-Src-mediated paxillin phosphorylation and extracellular signal-regulated kinase activity. These results demonstrate the critical role of PLD catalytic activity in the stimulation of Src signaling. In conclusion, we provide the first evidence that c-Src acts as a kinase of PLD and PLD acts as an activator of c-Src. This transmodulation between c-Src and PLD may contribute to the promotion of cellular proliferation via amplification of mitogenic signaling pathways.  相似文献   

20.
The role of phospholipase D (PLD) activation in hydrogen peroxide (H(2)O(2))-induced signal transduction and cellular responses is not completely understood. Here we present evidence that Ca(2+)-dependent tyrosine kinase, Pyk2, requires PLD activation to mediate survival pathways in rat pheochromocytoma PC12 cells under oxidative stress. The H(2)O(2)-induced phosphorylation of two Pyk2 sites (Tyr(580), and Tyr(881)) was suppressed by 1-butanol, an inhibitor of transphosphatidylation by PLD, and also by transfection of catalytically negative mouse PLD2K758R (PLD2KR). Furthermore, we found that PLD2 was associated with Pyk2 and Src, and that activation of PLD2 was required for H(2)O(2)-enhanced association of Src with Pyk2 leading to full activation of Pyk2. H(2)O(2)-induced phosphorylation of Akt and p70S6K was dependent on phosphatidylinositol 3-kinase (PI3K) activity and was abolished by 1-butanol but not t-butanol. Furthermore, the PI3K/Akt activation in response to H(2)O(2) was reduced by transfection of either PLD2KR or the dominant negative Pyk2DN. This study is the first demonstration that PLD2 activation is implicated in Src-dependent phosphorylation of Pyk2 (Tyr(580) and Tyr(881)) by promoting the complex formation between Pyk2 and activated Src in PC12 cells exposed to H(2)O(2), thereby resulting in activation of the survival signaling pathway PI3K/Akt/p70S6K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号