首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of glycolytic and other enzymes of carbohydrate metabolism were measured in free-living and parasitic stages of the rabbit stomach worm Obeliscoides cuniculi. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase, hexokinase, glucosephosphate isomerase, phosphofructokinase, aldolase, triosephosphate isomerase, α-glycerophosphatase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenol pyruvate carboxykinase, lactate dehydrogenase, alcohol dehydrogenase, and glucose-6-phosphatase activities were present in worms recovered 14, 20 and 190 days postinfection.The presence of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase indicates the possible function of a pentose phosphate pathway and a capacity for gluconeogenesis, respectively, in these worms.The ratio of pyruvate kinase (PK) to phosphoenol pyruvate carboxykinase (PEPCK) less than I in parasitic stages suggests that their most active pathway is that fixing CO2 into phosphoenol pyruvate to produce oxaloacetate.Low levels of glucose-6-phosphate dehydrogenase, triosephosphate isomerase, PEPCK and PK were recorded in infective third-stage larvae stored at 5°C for 5 and 12 mos. The ratio of PK to PEPCK greater than 1 indicates that infective larvae preferentially utilize a different terminal pathway than the parasitic stages.  相似文献   

2.
Due to the close correlation between glucose mobilization and utilization within animal tissues, in this paper, the stages of appearance of phosphorylase, glucose-6-phosphatase and hexokinase as well as the levels of some intermediates of glucose metabolism have been investigated during Bufo bufo development. Phosphorylase first appears at stage 13 and is dominant in the neural part of the embryo, but, after this stage, increases relatively more in the nonneural one. Hexokinase appears at stage 17 and glucose-6-phosphatase soon after. Phosphorylase appearance at stage 13 is correlated with an increase of lactate content in the embryo; this may indicate a metabolization of hexoses. On this basis, the subsequent appearance of hexokinase and glucose-6-phosphatase activities also seems coherent with hexose mobilization and utilization within embryo. No direct causative factor for the changes observed was evident.  相似文献   

3.
1. Starvation increases the activity of cytosolic P-enolpyruvate carboxkinase in rabbit liver some 4-5 fold but does not alter the activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase or glucose-6-phosphatase.2. Alloxan-induced diabetes increases the activities of cytosolic P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase approx. 6-, 2- and 2-fold, respectively. Again the activity of mitochondrial P-enolpyruvate carboxykinase is not altered. 3. Administration of mannoheptulose rapidly increases blood glucose levels and also causes a significant increase in cytosolic P-enolpyruvate carboyxkinase activity within 4 h. The activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase are not affected. 4. Administration of hydrocortisone also increases blood glucose levels and the activities of cytosolic P-enolpyruvate carboxykinase and glucose-6-phosphatase are significantly increased within 12h. Again, mitochondrial P-enolpyruvate carboxykinase and fructose-1,6-diphosphatase activities remain unaffected. 5. The observations that (A) the activity of cytosolic P-enolpyruvate carboxykinase responds to more situations conducive to gluconeogenesis than do the activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase, and (B) cytosolic P-enolpyruvate carboxykinase activity is rapidly adaptive under appropriate circumstances, suggests that this particular enzyme's activity plays an important role in the regulation of gluconeogenesis in rabbits.  相似文献   

4.
Comparison of the effects of a high fat and high protein diet on the capacity for glucose formation from pyruvate and glycerol was investigated in vivo and in vitro. Ratios of radioactivity incorporated from either pyruvate-3-14C or glycerol-l-14C into blood glucose to those into expired CO2 were higher in both groups fed the high fat and the high protein diet than those in a group fed a high carbohydrate diet. Gluconeogenesis from pyruvate and glycerol by liver slices were both increased significantly in rats fed the high fat diet, while feeding the high protein diet caused increase of renal gluconeogenesis from pyruvate and glycerol. The activities of hepatic and renal glucose-6-phosphatase(s) were changed in a similar fashion to changes in hepatic and renal gluconeogenesis, respectively.

In addition, the response of the activity of hepatic glucose-6-phosphatase with high dietary fat was more rapid than that of the activity of renal glucose-6-phosphatase with high dietary protein. Furthermore, the intraperitoneal injection of actinomycin-D to rats resulted in decrease of the activities of renal glucose-6-phosphatase of both groups fed the high fat and the high protein diet, but no significant change of the activity of hepatic glucose-6-phosphatase was observed among dietary groups.

These findings suggested that the increases in the overall flow of metabolites towards glucose formation by feeding the high fat and the high protein diet might be based on the action of different mechanisms which regulate the activities of glucose-6-phosphatase(s) of the liver and kidney.  相似文献   

5.
L P Ermolaeva 《Ontogenez》1983,14(5):503-509
Glucose-6-phosphatase was shown to be polyfunctional in the liver of the developing chick embryo. Changes in the activity of glucose-6-phosphate phosphohydrolase did not correlate with the rate of gluconeogenesis. The activity of this enzyme increased from the 16th to the 20th day of embryogenesis. The activities of pyrophosphate-glucose phosphotransferase, carbamyl-phosphate-glucose phosphotransferase did not change during embryogenesis. The ratio of the activities of phosphohydrolase and phosphotransferases was characterized by the predominance of the phosphohydrolase activity. The values of latency of phosphohydrolase and phosphotransferases did not correlate with the rate of gluconeogenesis. Glucose-6-phosphate phosphohydrolase was found not only in the microsomal, but in the nuclear fraction as well. KM(G6P) of the enzyme of the nuclear fraction differed from KM of the microsomal enzyme.  相似文献   

6.
The effects on newly-hatched turkey poults of feeding diets with varying levels of carbohydrate and of oral gavage with suspensions of corn starch were studied. Feeding lowered hepatic glucose-6-phosphatase activity and raised blood glucose and hepatic glycogen concentrations. In Nicholas strain turkeys, increases of dietary levels of carbohydrate enhanced hepatic glycogen stores without affecting blood glucose concentration or glucose-6-phosphatase activity. Oral gavage of poults with suspensions of corn starch in water raised blood glucose and hepatic glycogen concentrations and lowered glucose-6-phosphatase activity in dose- and time-dependent manners. Changes were noted at 1 hr post-gavage. Oral gavage with starch lowered lactate concentrations in muscle and plasma and lowered plasma concentrations of β-hydroxybutyrate and urate. Plasma concentrations of pyruvate appeared to decline with post-hatch holding without feed. Thus, the apparent effect of starch gavage on plasma pyruvate (high concentration) is dependent upon the length of the holding period for the controls. The data show that poults can alter their metabolism (decrease lipid oxidation and gluconeogenesis and increase carbohydrate stores) almost immediately (1 hr) after oral administration of carbohydrate.  相似文献   

7.
In the diapausing eggs of the silkworm, Bombyx mori , glycogen is rapidly converted to sorbitol and glycerol, and this conversion is reversed at termination of the diapause (C hino , 1958). To elucidate the pathway leading to this polyol formation and its regulatory mechanisms, enzymes concerning carbohydrate metabolism were surveyed in diapausing as well as in developing eggs of the silkworm.
Most of the enzyme activities concerning citric acid cycle are low at the beginning of the embryogenesis and during diapause, but increase at the later stages of the development. Making an exception, reduction rate of malate and fumarate was rather high from the onset of the embryonic development. Several glycolytic enzymes were also studied. Most remarkable fact is that phosphofructokinase activity could not be demonstrated in the diapausing and also in the early stages of the developing eggs. Other enzymes, viz. α-glycerophosphate dehydrogenase, aldolase, glyceraldehyde-3-phosphate dehydrogenase were detected from the beginning of the embryogenesis.
Absence of phosphofructokinase, together with the high activity in glucose-6-phosphate dehydrogenase, suggests that predominant pathway in carbohydrate metabolism in the early stages of embryogenesis and in the diapause period is by way of pentose phosphate pathway. This supposition is confirmed by the experiments using labeled glucose. Incorporation of the label into glycerol of the diapausing eggs was three to four fold when G-6-14C was injected into pupae as compared with the case of G-1-14C injection. The above experiments provide evidence supporting the theory that glycogen is converted into sorbitol and glycerol mostly by way of the pentose phosphate pathway in the diapausing eggs.  相似文献   

8.
Changes in carbohydrate metabolism were studied in the isolated intestinal loops of rabbits during secretory diarrhea, induced by cholera enterotoxin. Glucose synthesis level in the small intestinal mucosa and liver was measured by isotope technique, using L-alanine as a precursor. Intestinal gluconeogenesis, calculated per mg of protein, appeared to be twice higher than in the liver of fasting rabbits. Cholera enterotoxin administration enhanced gluconeogenesis in the liver by 60%, as compared to the control. The rate of glucose synthesis and glucose-6-phosphatase activity in the intestinal mucosa remained unchanged, whereas glucose-6-phosphatase in the liver was slightly inhibited. It is suggested that gluconeogenesis in the liver supplies glucose as a convenient energy source for the secretory process induced by cholera enterotoxin in the rabbit small intestine.  相似文献   

9.
Thymectomized rats have been studied with the aim to determine the activity of gluconeogenesis key enzymes (phosphoenol pyruvate carboxykinase, fructose-1.6-diphosphatase, glucose-6-phosphatase), the glycogen content in the liver, the corticosterone level in blood and electrolytes concentration in erythrocytes and blood plasma. The activity of glucose-6-phosphatase and the glycogen content in the liver as well as the corticosterone level in the rat blood are shown to diminish after thymectomy. Changes are found in the electrolytic composition of blood as well as in the activity of key enzyme of the pentose cycle in erythrocytes. The data obtained indicate that thymectomy in rats is followed by the pronounced biochemical shifts induced by the thymus hormone deficiency and disturbance of interrelations in the system of neuroendocrine regulation.  相似文献   

10.
Female minks (Mustela vison) fed diets based on freshwater, marine or mixed fish were exposed to 1 mg of polychlorinated biphenyls (PCBs) a day for 21 weeks. The plasma leptin and thyroxine concentrations and the glucose-6-phosphatase and glycogen phophorylase activities in the liver were measured at the end of the experiment. The plasma thyroxine concentrations were significantly higher in the group exposed to PCBs. The mean plasma leptin concentration and glucose-6-phosphatase activity was the highest in the group that had the lowest body-mass index (BMI). The glycogen phophorylase activity was the highest in the freshwater fish-control group. The results suggest that the amount of fat in the body of the female minks is not the only determinant of the plasma leptin levels, but the leptin levels seem to rise with a lowered BMI unlike in rodents or humans. The positive correlation between the leptin levels and the glucose-6-phosphatase activity suggests increased gluconeogenesis with high leptin levels. Subchronic exposure to PCBs seems to have no effect on the plasma leptin levels or the glucose-6-phophatase activities, but it elevates significantly the plasma thyroxine levels with a mechanism that remains unknown.  相似文献   

11.
The noradrenaline and glycogen contents as well as hexokinase, glucokinase and glucose-6-phosphatase activities were determined in normal, embryonic and partially denervated (bilateral dissection of the Nervus splanchnicus or Nervus vagus) rat liver and in two transplantable hepatomas. In embryonic liver and hepatomas a strong decrease or complete loss of noradrenaline and glycogen levels and glucokinase and glucose-6-phosphatase activities is demonstrable as compared to the livers of adult animals, while the hexokinase activity is enhanced. Following bilateral splanchnicotomy the glycogen content and hexokinase activity are enhanced; the glucose-6-phosphatase activity is reduced, and the liver does not contain any noradrenaline. Bilateral vagotomy causes decrease of the glycogen content, of the hexokinase and glucokinase activities and an enhancement of glucose-6-phosphatase activity. The results lend support to the idea of antagonistic action of the sympathetic and parasympathetic nervous systems upon several partial reactions of carbohydrate metabolism of liver. In addition, it can be assumed that the alterations of the carbohydrate metabolism demonstrable in hepatomas as compared to normal liver are not solely attributable to disturbance or breakdown of the nervous regulation.  相似文献   

12.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase were quantitatively determined for the first time in glycogen body tissue from late embryonic and neonatal chicks. For comparative purposes, the activities of these enzymes were examined also in liver and skeletal muscle from pre- and post-hatched chicks. The present data show that both the embryonic and neonatal glycogen body lack glucose-6-phosphatase, but contain relatively high levels of glucose-6-phosphate dehydrogenase. The activity of each dehydrogenase in either embryonic or neonatal glycogen body tissue is two- to five-fold greater than that found in muscle or liver from pre- or post-hatched chicks. The relatively high activities observed for both dehydrogenases in the glycogen body, together with the absence of glucose-6-phosphatase activity in that tissue, suggest that the direct oxidative pathway (pentose phosphate cycle) of glucose metabolism is a functionally significant route for glycogen utilization in the glycogen body. It is hypothesized that the glycogen body is metabolically linked to lipid synthesis and myelin formation in the central nervous system of the avian embryo.  相似文献   

13.
Female minks (Mustela vison) fed diets based on freshwater, marine or mixed fish were exposed to 1 mg of polychlorinated biphenyls (PCBs) a day for 21 weeks. The plasma leptin and thyroxine concentrations and the glucose-6-phosphatase and glycogen phophorylase activities in the liver were measured at the end of the experiment. The plasma thyroxine concentrations were significantly higher in the group exposed to PCBs. The mean plasma leptin concentration and glucose-6-phosphatase activity was the highest in the group that had the lowest body-mass index (BMI). The glycogen phophorylase activity was the highest in the freshwater fish-control group. The results suggest that the amount of fat in the body of the female minks is not the only determinant of the plasma leptin levels, but the leptin levels seem to rise with a lowered BMI unlike in rodents or humans. The positive correlation between the leptin levels and the glucose-6-phosphatase activity suggests increased gluconeogenesis with high leptin levels. Subchronic exposure to PCBs seems to have no effect on the plasma leptin levels or the glucose-6-phophatase activities, but it elevates significantly the plasma thyroxine levels with a mechanism that remains unknown.  相似文献   

14.
15.
Two key enzymes of gluconeogenesis, glucose-6-phosphatase and fructosp-1-6-diphosphatase, were present in the cerebral hemispheres, the cerebellum and the brain stem of the rat brain. Significant activities of these-enzymes were associated with the particulate fraction.  相似文献   

16.
The compensatory changes of carbohydrate metabolism induced by fasting were investigated in frugivorous bats, Artibeus lituratus and Artibeus jamaicensis. For this purpose, plasma levels of glucose and lactate, liver and muscle glycogen content, rates of liver gluconeogenesis and the activity of related enzymes were determined in male bats. After a decrease during the first 48 h of fasting, plasma glucose levels remained constant until the end of the experimental period. Plasma lactate levels, extremely high in fed bats, decreased after 48 h of fasting. Similarly, liver glycogen content, markedly high in fed animals, was reduced to low levels after 24 h without food. Muscle glycogen was also reduced in fasted bats. The expected increase in liver gluconeogenesis during fasting was observed after 48 h of fasting. The activities of liver glucose-6-phosphatase and fructose-1,6-bisphosphatase were not affected by food withdrawn. On the other hand, fasting for 24 h induced an increase in the activity of liver cytosolic phosphoenolpyruvate carboxykinase. The data indicate that liver gluconeogenesis has an important role in the glucose homeostasis in frugivorous bats during prolonged periods of food deprivation. During short periods of fasting liver glycogenolysis seems to be the main responsible for the maintenance of glycemia.  相似文献   

17.
Approximately the same levels of six of the seven enzymes catalyzing reactions of the pentose phosphate pathway are in the cisternae of washed microsomes from rat heart, spleen, lung, and brain. Renal and hepatic microsomes also have detectable levels of these enzymes except ribulose-5-phosphate epimerase and ribose-5-phosphate isomerase. Their location in the cisternae is indicated by their latencies, i.e. requirement for disruption of the membrane for activity. In addition, transketolase, transaldolase, and glucose-6-phosphatase, a known cisternal enzyme, are inactivated by chymotrypsin and subtilisin only in disrupted hepatic microsomes under conditions in which NADPH-cytochrome c reductase, an enzyme on the external surface, is inactivated equally in intact and disrupted microsomes. The failure to detect the epimerase and isomerase in hepatic microsomes is due to inhibition of their assays by ketopentose-5-phosphatase. Xylulose 5-phosphate is hydrolyzed faster than ribulose 5-phosphate. A mild heat treatment destroys hepatic xylulose-5-phosphatase and glucose-6-phosphatase without affecting acid phosphatase. These results plus the established wide distribution of glucose dehydrogenase, the microsomal glucose-6-phosphate dehydrogenase, and its localization to the lumen of the endoplasmic reticulum suggest that most mammalian cells have two sets of enzymes of the pentose phosphate pathway: one is cytoplasmic and the other is in the endoplasmic reticulum. The activity of the microsomal pentose phosphate pathway is estimated to be about 1.5% that of the cytoplasmic pathway.  相似文献   

18.
BACKGROUND/AIMS: The flavonoid silibinin has been reported to be beneficial in several hepatic disorders. Recent evidence also suggests that silibinin could be beneficial in the treatment of type 2 diabetes, owing to its anti-hyperglycemic properties. However, the mechanism(s) underlying these metabolic effects remains unknown. METHODS: The effects of silibinin on liver gluconeogenesis were studied by titrating hepatocytes from starved rats with sub-saturating concentrations of various exogenous substrates in a perifusion system. Hepatocytes from fed rats were also used to investigate glycogenolysis from endogenous glycogen. The effect of silibinin on glucose-6-phosphatase kinetics was determined in intact and permeabilized rat liver microsomes. RESULTS: Silibinin induced a dose-dependent inhibition of gluconeogenesis associated with a potent decrease in glucose-6-phosphate hydrolysis. This effect was demonstrated whatever the gluconeogenic substrates used, i.e. dihydroxyacetone, lactate/pyruvate, glycerol and fructose. In addition, silibinin decreased the glucagon-induced stimulation of both gluconeogenesis and glycogenolysis, this being associated with a reduction of glucose-6-phosphate hydrolysis. Silibinin inhibits glucose-6-phosphatase in rat liver microsomes in a concentration-dependent manner that could explain the decrease in glucose-6-phosphate hydrolysis seen in intact cells. CONCLUSION: The inhibitory effect of silibinin on both hepatic glucose-6-phosphatase and gluconeogenesis suggests that its use may be interesting in treatment of type 2 diabetes.  相似文献   

19.
Indole glucosinolates, present in cruciferous vegetables have been investigated for their putative pharmacological properties. The current study was designed to analyse whether the treatment of the indole glucosinolates—indole-3-carbinol (I3C) and its metabolite 3,3′-diindolylmethane (DIM) could alter the carbohydrate metabolism in high-fat diet (HFD)-induced C57BL/6J mice. The plasma glucose, insulin, haemoglobin (Hb), glycosylated haemoglobin (HbA1c), glycogen and the activities of glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) were analysed in liver and kidney of the treated and HFD mice. Histopathological examination of liver and pancreases were also carried out. The HFD mice show increased glucose, insulin and HbA1c and decreased Hb and glycogen levels. The elevated activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase and subsequent decline in the activity of glucokinase and glucose-6-phosphate dehydrogenase were seen in HFD mice. Among treatment groups, the mice administered with I3C and DIM, DIM shows decreased glucose, insulin and HbA1c and increased Hb and glycogen content in liver when compared to I3C, which was comparable with the standard drug metformin. The similar result was also obtained in case of carbohydrate metabolism enzymes; treatment with DIM positively regulates carbohydrate metabolic enzymes by inducing the activity of glucokinase and glucose-6-phosphate dehydrogenase and suppressing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase when compared to I3C, which were also supported by our histopathological observations.  相似文献   

20.
Adult rat hepatocytes were kept in primary culture for 48 h under different hormonal conditions to induce an enzyme pattern which with respect to carbohydrate metabolism approximated that of periportal and perivenous hepatocytes in vivo. 1. Glucagon-treated cells compared with control cells possessed a lower activity of glucokinase, a 4.5-fold higher activity of phosphoenolpyruvate carboxykinase and unchanged levels of glucose-6-phosphatase, phosphofructokinase, fructose-bisphosphatase and pyruvate kinase; they resembled in a first approximation the periportal cell type and are called for simplicity 'periportal'. Inversely, insulin-treated cells compared with control cells contained a 2.2-fold higher activity of glucokinase, a slightly decreased activity of phosphoenolpyruvate carboxykinase, increased activities of phosphofructokinase and pyruvate kinase and unaltered levels of glucose-6-phosphatase and fructose-bisphosphatase; they resembled perivenous cells and are called simply 'perivenous'. Gluconeogenesis and glycolysis were studied under various substrate and hormone concentrations. 2. Physiological concentrations of glucose (5 mM) and lactate (2 mM) gave about 80% saturation of gluconeogenesis from lactate and less than 15% saturation of glycolysis at a simultaneous 40% inhibition of the glycolytic rate by lactate. 3. Comparison of the two cell types showed that under identical assay conditions (5 mM glucose, 2 mM lactate, 0.5 nM insulin, 0.1 muM dexamethasone) gluconeogenesis was 1.5-fold faster in the 'periportal' cells and glycolysis was 2.4-fold faster in the 'perivenous' cells. 4. Metabolic rates were under short-term hormonal control. Insulin increased glycolysis three fold in both cell types with a half-maximal effect at about 0.4 nM, but did not influence the gluconeogenic rate. Glucagon inhibited glycolysis by 70% with a half-maximal effect at about 0.1 nM. Gluconeogenesis was stimulated by glucagon (half-maximal dose: 0.5 nM) 1.8-fold only in 'periportal' cells containing high phosphoenolpyruvate carboxykinase activity, not in the 'perivenous' cells with a low level of this enzyme. 5. A comparison of the two cell types showed that with maximally stimulating hormone concentrations gluconeogenesis was threefold faster in 'periportal' cells and glycolysis was eightfold faster in 'perivenous' cells. The results support the view that periportal and perivenous hepatocytes in vivo catalyse gluconeogenesis and glycolysis at inverse rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号