首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT) neurons of the hypothalamic paraventricular nucleus (PVN) can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV) leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS), and provided further evidence suggesting a role of OXT to mediate leptin’s actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO) rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin’s ability to reduce body weight in both control and obese rats.  相似文献   

2.
To investigate whether phosphatidylinositol-3 kinase (PI3K) signaling mediates the metabolic effects of hypothalamic leptin action, adenoviral gene therapy was used to direct expression of leptin receptors to the area of the hypothalamic arcuate nucleus (ARC). This intervention markedly improved insulin sensitivity in genetically obese, leptin-receptor-deficient Koletsky (fak/fak) rats via a mechanism that was not dependent on reduced food intake but was attenuated by 44% by third-ventricular infusion of the PI3K inhibitor LY294002. Conversely, ARC-directed expression of a constitutively active mutant of protein kinase B (PKB/Akt, an enzyme activated by PI3K) mimicked the insulin-sensitizing effect of restored hypothalamic leptin signaling in these animals, despite having no effect on food intake or body weight. These findings suggest that hypothalamic leptin signaling is an important determinant of glucose metabolism and that the underlying neuronal mechanism involves PI3K.  相似文献   

3.
下丘脑是人体的摄食中枢,它通过抑制食欲的阿黑皮素原(POMC)神经元和促进食欲的神经肽相关蛋白(AgRP)神经元调节摄食及能量代谢。叉头转录因子O亚族1(FoxO1)是胰岛素信号通路和瘦素信号通路中重要的调节蛋白,FoxO1的生理作用是促进下丘脑Agrp基因表达、抑制Pomc基因表达,抑制瘦素信号通路的转录激活因子3(STAT3)蛋白对Pomc基因转录的促进作用,从而促进食欲。瘦素和胰岛素均可激活经典的IRS/PI(3)K/Akt信号通路,使FoxO1磷酸化失去活性,抑制食欲。此外,沉默信息调节因子Sirt1也可以通过去乙酰化,影响FoxO1的转录活性。本文综述了胰岛素、瘦素、Sirt1通过FoxO1调节下丘脑摄食中枢的作用机制。  相似文献   

4.
Intracerebroventricular (ICV) administration of Neuromedin U (NMU), a hypothalamic neuropeptide, or leptin, an adipostat hormone released from adipose tissue, reduces food intake and increases energy expenditure. Leptin stimulates the release of NMU in vitro, and NMU expression is reduced in models of low or absent leptin. We investigated the role of NMU in mediating leptin-induced satiety. ICV administration of anti-NMU immunoglobulin G (IgG) (5 nmol) to satiated rats significantly increased food intake 4 h after injection, an effect seen for 相似文献   

5.
6.
Research has shown that the synergistic interaction between vagal cholecystokinin-A receptors (CCKARs) and leptin receptors (LRbs) mediates short term satiety. We hypothesize that this synergistic interaction is mediated by cross-talk between signaling cascades used by CCKARs and LRbs, which, in turn, activates closure of K(+) channels, leading to membrane depolarization and neuronal firing. Whole cell patch clamp recordings were performed on isolated rat nodose ganglia neurons. Western immunoblots elucidated the intracellular signaling pathways that modulate leptin/CCK synergism. In addition, STAT3, PI3K, Src, and MAPK genes were silenced by lentiviral infection and transient Lipofectamine transfection of cultured rat nodose ganglia to determine the effect of these molecules on leptin/CCK synergism. Patch clamp studies showed that a combination of leptin and CCK-8 caused a significant increase in membrane input resistance compared with leptin or CCK-8 alone. Silencing the STAT3 gene abolished the synergistic action of leptin/CCK-8 on neuronal firing. Leptin/CCK-8 synergistically stimulated a 7.7-fold increase in phosphorylated STAT3 (pSTAT3), which was inhibited by AG490, C3 transferase, PP2, LY294002, and wortmannin, but not PD98059. Silencing the Src and PI3K genes resulted in a loss of leptin/CCK-stimulated pSTAT3. We conclude that the synergistic interaction between vagal CCKARs and LRbs is mediated by the phosphorylation of STAT3, which, in turn, activates closure of K(+) channels, leading to membrane depolarization and neuronal firing. This involves the interaction between CCK/Src/PI3K cascades and leptin/JAK2/PI3K/STAT3 signaling pathways. Malfunctioning of these signaling molecules may result in eating disorders.  相似文献   

7.
8.
Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by alpha-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp(-/-)) mice to examine the physiological role of AgRP. Agrp(-/-) mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp(-/-) mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp(-/-) mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp(-/-);Npy(-/-)) mice to determine whether NPY or AgRP plays a compensatory role in Agrp(-/-) or NPY-deficient (Npy(-/-)) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp(-/-);Npy(-/-) mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.  相似文献   

9.
The mechanism by which leptin increases ATP-sensitive K(+) (K(ATP)) channel activity was investigated using the insulin-secreting cell line, CRI-G1. Wortmannin and LY 294002, inhibitors of phosphoinositide 3-kinase (PI3-kinase), prevented activation of K(ATP) channels by leptin. The inositol phospholipids phosphatidylinositol bisphosphate and phosphatidylinositol trisphosphate (PtdIns(3,4,5)P(3)) mimicked the effect of leptin by increasing K(ATP) channel activity in whole-cell and inside-out current recordings. LY 294002 prevented phosphatidylinositol bisphosphate, but not PtdIns(3,4,5)P(3), from increasing K(ATP) channel activity, consistent with the latter lipid acting as a membrane-associated messenger linking leptin receptor activation and K(ATP) channels. Signaling cascades, activated downstream from PI 3-kinase, utilizing PtdIns(3,4,5)P(3) as a second messenger and commonly associated with insulin and cytokine action (MAPK, p70 ribosomal protein-S6 kinase, stress-activated protein kinase 2, p38 MAPK, and protein kinase B), do not appear to be involved in leptin-mediated activation of K(ATP) channels in this cell line. Although PtdIns(3,4,5)P(3) appears a plausible and attractive candidate for the messenger that couples K(ATP) channels to leptin receptor activation, direct measurement of PtdIns(3,4,5)P(3) demonstrated that insulin, but not leptin, increased global cellular levels of PtdIns(3,4,5)P(3). Possible mechanisms to explain the involvement of PI 3-kinases in K(ATP) channel regulation are discussed.  相似文献   

10.
An elevated circulating level of the adipocyte-derived satiety hormone leptin is an independent risk factor for cardiovascular disease. Because thrombus formation is a major cause of acute coronary events and leptin was shown previously to facilitate ADP-induced platelet aggregation, we chose to define the signaling events involved in leptin-mediated platelet activation. Using pharmacological, biochemical, and cell biological approaches, we show that leptin-induced platelet activation required activation of a signaling cascade that included the long form of the leptin receptor, three kinases [Janus kinase 2 (JAK2), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (PKB/Akt)], the insulin receptor substrate-1 (IRS-1), and the major human platelet cAMP phosphodiesterase phosphodiesterase 3A (PDE3A). Moreover, we identify a role for an intraplatelet LEPR/JAK2/IRS-1/PI3K/PKB/PDE3A molecular complex that allows for the selective leptin-mediated activation of platelets. Our data demonstrate that leptin promotes platelet activation, provides a mechanistic basis for the prothrombotic effect of this hormone, and identifies a potentially novel therapeutic avenue to limit obesity-associated cardiovascular disease.  相似文献   

11.
12.
Suppressor of cytokine signaling-3 (SOCS3) is thought to be involved in the development of central leptin resistance and obesity by inhibiting STAT3 pathway. Because phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in transducing leptin action in the hypothalamus, we examined whether SOCS3 exerted an inhibition on this pathway. We first determined whether leptin sensitivity in the hypothalamic PI3K pathway was increased in brain-specific Socs3-deficient (NesKO) mice. In NesKO mice, hypothalamic insulin receptor substrate-1 (IRS1)-associated PI3K activity was significantly increased at 30 min and remained elevated up to 2 h after leptin intraperitoneal injection, but in wild-type (WT) littermates, the significant increase was only at 30 min. Hypothalamic p-STAT3 levels were increased up to 5 h in NesKO as opposed to 2 h in WT mice. In food-restricted WT mice with reduced body weight, leptin increased hypothalamic PI3K activity only at 30 min, and p-STAT3 levels at 30-120 min postinjection. These results suggest increased leptin sensitivity in both PI3K and STAT3 pathways in the hypothalamus of NesKO mice, which was not due to a lean phenotype. In the next experiment with a clonal hypothalamic neuronal cell line expressing proopiomelanocortin, we observed that whereas leptin significantly increased IRS1-associated PI3K activity and p-JAK2 levels in cells transfected with control vector, it failed to do so in SOCS3-overexpressed cells. Altogether, these results imply a SOCS3 inhibition of the PI3K pathway of leptin signaling in the hypothalamus, which may be one of the mechanisms behind the development of central leptin resistance and obesity.  相似文献   

13.
Although many effects of leptin are mediated through the central nervous system, leptin can regulate metabolism through a direct action on peripheral tissues, such as fat and liver. We show here that leptin, at physiological concentrations, acts through an intracellular signaling pathway similar to that activated by insulin in isolated primary rat hepatocytes. This pathway involves stimulation of phosphatidylinositol 3-kinase (PI3K) binding to insulin receptor substrate-1 and insulin receptor substrate-2, activation of PI3K and protein kinase B (AKT), and PI3K-dependent activation of cyclic nucleotide phosphodiesterase 3B, a cAMP-degrading enzyme. One important function of this signaling pathway is to reduce levels of cAMP, because leptin-mediated activation of both protein kinase B and phosphodiesterase 3B is most marked following elevation of cAMP by glucagon, and because leptin suppresses glucagon-induced cAMP elevation in a PI3K-dependent manner. There is little or no expression of the long form leptin receptor in primary rat hepatocytes, and these signaling events are probably mediated through the short forms of the leptin receptor. Thus, leptin, like insulin, induces an intracellular signaling pathway in hepatocytes that culminates in cAMP degradation and an antagonism of the actions of glucagon.  相似文献   

14.
15.
16.
Leptin has pleiotropic effects on glucose homeostasis and feeding behavior. Here, we validate the use of a cell-permeable phosphopeptide that blocks STAT3 activation in vivo. The combination of this biochemical approach with stereotaxic surgical techniques allowed us to pinpoint the contribution of hypothalamic STAT3 to the acute effects of leptin on food intake and glucose homeostasis. Leptin's ability to acutely reduce food intake critically depends on intact STAT3 signaling. Likewise, hypothalamic signaling of leptin through STAT3 is required for the acute effects of leptin on liver glucose fluxes. Lifelong obliteration of STAT3 signaling via the leptin receptor in mice (s/s mice) results in severe hepatic insulin resistance that is comparable to that observed in db/db mice, devoid of leptin receptor signaling. Our results demonstrate that the activation of the hypothalamic STAT3 pathway is an absolute requirement for the effects of leptin on food intake and hepatic glucose metabolism.  相似文献   

17.
Metabolic fuels act on hypothalamic neurons to regulate feeding behavior and energy homeostasis, but the signaling mechanisms mediating these effects are not fully clear. Rats placed on a low-protein diet (10% of calories) exhibited increased food intake (P < 0.05) and hypothalamic Agouti-related protein (Agrp) gene expression (P = 0.002). Direct intracerebroventricular injection of either an amino acid mixture (RPMI 1640) or leucine alone (1 mug) suppressed 24-h food intake (P < 0.05), indicating that increasing amino acid concentrations within the brain is sufficient to suppress food intake. To define a cellular mechanism for these direct effects, GT1-7 hypothalamic cells were exposed to low amino acids for 16 h. Decreasing amino acid availability increased Agrp mRNA levels in GT1-7 cells (P < 0.01), and this effect was attenuated by replacement of the amino acid leucine (P < 0.05). Acute exposure to elevated amino acid concentrations increased ribosomal protein S6 kinase phosphorylation via a rapamycin-sensitive mechanism, suggesting that amino acids directly stimulated mammalian target of rapamycin (mTOR) signaling. To test whether mTOR signaling contributes to amino acid inhibition of Agrp gene expression, GT1-7 cells cultured in either low or high amino acids for 16 h and were also treated with rapamcyin (50 nM). Rapamycin treatment increased Agrp mRNA levels in cells exposed to high amino acids (P = 0.01). Taken together, these observations indicate that amino acids can act within the brain to inhibit food intake and that a direct, mTOR-dependent inhibition of Agrp gene expression may contribute to this effect.  相似文献   

18.
19.
In this study, we investigated the effect of tea polyphenols, (-)-epigallocatechin-3-gallate or theaflavins, on UVB-induced phosphatidylinositol 3-kinase (PI3K) activation in mouse epidermal JB6 Cl 41 cells. Pretreatment of cells with these polyphenols inhibited UVB-induced PI3K activation. Furthermore, UVB-induced activation of Akt and ribosomal p70 S6 kinase (p70 S6-K), PI3K downstream effectors, were also attenuated by the polyphenols. In addition to LY294002, a PI3K inhibitor, pretreatment with a specific mitogen-activated protein/extracellular signal-regulated protein kinases (Erks) kinase 1 inhibitor, U0126, or a specific p38 kinase inhibitor, SB202190, blocked UVB-induced activation of both Akt and p70 S6-K. Pretreatment with LY294002 restrained UVB-induced phosphorylation of Erks, suggesting that in UVB signaling, the Erk pathway is mediated by PI3K. Moreover, pretreatment with rapamycin, an inhibitor of p70 S6-K, inhibited UVB-induced activation of p70 S6-K, but UVB-induced activation of Akt did not change. Interestingly, UVB-induced p70 S6-K activation was directly blocked by the addition of (-)-epigallocatechin-3-gallate or theaflavins, whereas these polyphenols showed only a weak inhibition on UVB-induced Akt activation. Because PI3K is an important factor in carcinogenesis, the inhibitory effect of these polyphenols on activation of PI3K and its downstream effects may further explain the anti-tumor promotion action of these tea constituents.  相似文献   

20.
Ren D  Li M  Duan C  Rui L 《Cell metabolism》2005,2(2):95-104
Leptin regulates energy balance and body weight by activating its receptor LEPRb and multiple downstream signaling pathways, including the STAT3 and the IRS2/PI 3-kinase pathways, in the hypothalamus. Leptin stimulates activation of LEPRb-associated JAK2, which initiates cell signaling. Here we identified SH2-B, a JAK2-interacting protein, as a key regulator of leptin sensitivity, energy balance, and body weight. SH2-B homozygous null mice were severely hyperphagic and obese and developed a metabolic syndrome characterized by hyperleptinemia, hyperinsulinemia, hyperlipidemia, hepatic steatosis, and hyperglycemia. The expression of hypothalamic orexigenic NPY and AgRP was increased in SH2-B(-/-) mice. Leptin-stimulated activation of hypothalamic JAK2 and phosphorylation of hypothalamic STAT3 and IRS2 were significantly impaired in SH2-B(-/-) mice. Moreover, overexpression of SH2-B counteracted PTP1B-mediated inhibition of leptin signaling in cultured cells. Our data suggest that SH2-B is an endogenous enhancer of leptin sensitivity and required for maintaining normal energy metabolism and body weight in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号