首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies show that hysterectomy on Day 1 of pseudopregnancy prolongs serum progesterone secretion in estrogen-treated pseudopregnant rabbits. These studies were undertaken to determine the day of pseudopregnancy when uterine factors are released to alter luteal function. When hysterectomies were performed on either Day 5, 8, 10, or 13 of pseudopregnancy, serum progesterone concentrations were greater than 10 ng/ml between Days 18 and 27 of pseudopregnancy compared to levels of approximately 4 ng/ml in sham-hysterectomized rabbits on these same days. In contrast, serum progesterone levels were not elevated when hysterectomies were performed on Day 11 of pseudopregnancy and were only partially maintained when hysterectomies were performed on Day 12 of pseudopregnancy. Twice daily injections of prolactin (1.5 mg, s.c.) between Days 1 and 33 of pseudopregnancy were unable to mimic the effect of estradiol in the hysterectomized rabbit. Twice daily injections of indomethacin (8 mg/kg, s.c.) between Days 6 and 23 of pseudopregnancy lowered uterine and luteal prostaglandin F2 alpha levels approximately 10-fold on Day 24 of pseudopregnancy but did not maintain progesterone secretion. Serum cholesterol levels were not altered by hysterectomy on any day and were thus not related to the maintenance of progesterone production. These results suggest that the uterus produces both inhibitory and stimulatory factors that effect luteal progesterone secretion. First, an inhibitor is released between Days 10 and 11 of pseudopregnancy in estrogen-treated rabbits that prevents the rabbit corpus luteum from responding to estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Our previous studies show that lipoproteins stimulate progesterone secretion by rabbit luteal cells in vitro and that estradiol modifies this effect. This study examines the relationship between estradiol and serum lipoproteins for progesterone production by rabbit corpora lutea in vivo. Using morphometric analysis, we determined that estrogen treatment of hysterectomized pseudopregnant (E-hyst) rabbits increased luteal lipid volume by mid-pseudopregnancy without altering serum progesterone levels. Treatment of E-hyst rabbits with 4-amino-3,4,pyrazolo pyrimidine (APP) during early to mid-pseudopregnancy reduced serum cholesterol levels without decreasing serum progesterone concentrations. However, 3-hydroxy-3 methyl glutaryl-CoA reductase activity was increased. Thus, in the presence of exogenous estrogen, serum cholesterol is esterified and stored rather than converted directly into progesterone. APP-treatment of E-hyst rabbits during late-pseudopregnancy, when estrogen receptor levels are low, increased serum progesterone levels and reduced intracellular lipid content. Thus, stored lipid is the primary source of cholesterol for progesterone synthesis. In addition, estrogen, via estrogen receptor, is important in maintaining steady progesterone output despite fluctuations in serum lipoprotein levels. A working model for cholesterol utilization by rabbit luteal cells is presented, which suggests that stored cholesterol esters, derived from both endogenous and exogenous sources, is the key source or cholesterol for progesterone production. Furthermore, we propose that estradiol regulates the uptake and storage of cholesterol and its rate of metabolism into progesterone.  相似文献   

3.
Effects of estradiol benzoate and prostaglandin F(2alpha) (PGF(2alpha)) on concentrations of progesterone and estrogen in serum and the percentage of live births were determined in 21 gilts treated with exogenous progesterone in late gestation. All gilts received progesterone (25mg s.c. four times daily) from Days 108 through 113 of gestation. Gilts receiving no other treatments (controls) had elevated levels of progesterone through 1800 h on Day 114 (29.2 +/- 11.4 ng/ml) and farrowed at 115.6 +/- 0.3 d of gestation with a relatively low percentage of live births (66.8 +/- 17.3). Gilts treated with PGF(2alpha) administered at 0600 h on Day 114 had less (P<0.01) progesterone by 1800 h (7.0 +/- 1.3 ng/ml) relative to that of the controls, but they had similar gestation lengths (115.5 +/- 0.3) and percentages of live births (50.0 +/- 16.2). Administration of estradiol benzoate (10 mg) to gilts at 0600 h on Day 114 did not reduce progesterone on Day 114 or the gestation length relative to that of the control gilts, but it did increase (P<0.05) the percentage of live births (100%).  相似文献   

4.
Occupied and unoccupied LH receptors in corpora lutea, and LH and progesterone concentrations in circulating plasma, were measured in non-pregnant gilts that had been treated with oestradiol-17 beta benzoate to prolong luteal function. Oestradiol benzoate (5 mg, administered on Day 12 after oestrus) delayed luteal regression and the decline in LH receptor levels at luteolysis and raised unoccupied receptor levels from 11.8 +/- 1.14 fmol/mg protein on Days 10--15 after oestrus to 31.8 +/- 3.26 fmol/mg protein on Days 15--21. There was no simultaneous rise in occupied receptor levels and occupancy decreased from 29.8 +/- 3.01 to 11.5 +/- 1.26%. Basal plasma LH concentrations were unchanged by oestradiol, but mean corpus luteum weight and plasma progesterone concentrations were slightly reduced. Oestradiol benzoate on Day 12 caused a similar increase in unoccupied receptor levels in gilts hysterectomized on Days 6--9 after oestrus, from 17.0 +/- 5.83 to 34.5 +/- 6.00 fmol/mg protein, determined on Days 15--18. Plasma concentrations of LH and progesterone were unchanged by oestradiol. Unoccupied receptor levels in corpora lutea and plasma LH and progesterone were unaltered by hysterectomy in untreated gilts. Occupied receptor levels were not influenced by hysterectomy or oestradiol. It is concluded that oestradiol-17 beta raises luteal LH receptor levels by a mechanism independent of the uterus.  相似文献   

5.
Immunoactivity concentrations of ovarian relaxin, serum relaxin and serum progesterone were determined from Day 12 through Day 18 of pregnancy in rats treated with oil or oestradiol-17 beta after hysterectomy or hypophysectomy and hysterectomy on Day 12. Relaxin and progesterone concentrations increased between Days 12 and 18 in sham-operated rats but failed to increase or declined in oil-treated hysterectomized or hypophysectomized-hysterectomized animals. Oestradiol treatment increased serum concentrations of relaxin and progesterone in hypophysectomized-hysterectomized rats on Day 15 and increased the concentrations of ovarian and serum relaxin and serum progesterone in hysterectomized rats on Day 18. These data are consistent with the concept that placental support for the promotion and maintenance of relaxin and progesterone concentrations from Day 12 through Day 18 may be mediated, at least in part, through a common mechanism(s) which involves oestradiol.  相似文献   

6.
Secreted phosphoprotein 1 (SPP1, commonly referred to as osteopontin and formerly known as bone sialoprotein 1, early T-lymphocyte activation 1) is an extracellular matrix/adhesion molecule that is upregulated in the pregnant uterus of all mammals examined to date. This study focused on the pig, which has true epitheliochorial placentation and exhibits induction of SPP1 mRNA in luminal epithelium (LE) just before conceptus attachment and in glandular epithelium (GE) after Day 30 of pregnancy. The objective of this study was to determine steroid regulation of SPP1 mRNA and protein in porcine uterine epithelium. To examine the effect of estrogen, cyclic gilts were treated daily (Days 11-14) with 5 mg estradiol benzoate (i.m.) and hysterectomized on Day 15. To evaluate the long-term effect of pseudopregnancy, cyclic gilts were given daily injections (Days 11-15) with steroid as above and hysterectomized on Day 90. In situ hybridization showed high expression of SPP1 mRNA only in LE contiguous with apposing conceptus tissue on Day 15 of pregnancy. In contrast, estrogen injection resulted in moderate but uniform SPP1 mRNA in all LE of Day 15 nonpregnant gilts, with expression maintained through Day 90 of pseudopregnancy. SPP1 mRNA also localized to the GE of Day 90 pseudopregnant gilts, similar to expression in late gestation. Consistent with in situ hybridization results, SPP1 protein localized to the apical surface of LE in all estrogen-treated gilts and in the GE on Day 90 of pseudopregnancy. We conclude that, in pregnant pigs, SPP1 is induced by conceptus estrogen in uterine LE and is regulated in GE in a manner coincident with CL/placental progesterone production.  相似文献   

7.
Previous investigations have clearly demonstrated that estradiol maintains corpus luteum function. However, it is unknown whether estradiol can restimulate progesterone synthesis and/or growth of corpora lutea that have already undergone luteolysis. The present study was designed to determine 1) whether estradiol can reactivate the steroidogenic capacity and/or growth of corpora lutea that are deprived of luteotropic support, 2) whether estradiol affects progesterone metabolism, and 3) whether the action of estradiol is related to levels of rat placental lactogen in the peripheral circulation. Rats were hypophysectomized and hysterectomized on Day 12 of pregnancy and were treated between Days 12 and 15 with either estradiol (100 micrograms/day) or 1-cm testosterone implants. Both treatments are known to maintain luteal concentrations of estradiol at physiological levels. In vivo treatment with either estradiol or testosterone prevented the drop in progesterone production and maintained the concentration of serum progesterone at levels found in intact pregnant rats. This action was not due to an alteration in the rate of metabolism of progesterone to 20 alpha-hydroxyprogesterone, since peripheral serum levels and in vitro production of 20 alpha-hydroxyprogesterone were unaffected by estradiol. When testosterone treatment was started 24 and 48 h after hypophysectomy and hysterectomy, at a time when progesterone production had been markedly reduced and luteal growth had ceased, a restimulation of both progesterone synthesis and luteal growth was observed. However, in all cases the ability of estradiol to stimulate progesterone was finite, and corpora lutea ceased to respond by Day 17, coincident with the time that rat placental lactogen became undetectable in the circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this study was to determine the short-term effects of progesterone action on estrogen receptor (Re) levels in the rat uterus. Ovariectomized, adrenalectomized rats were maintained on subcutaneous Silastic implants containing crystalline estradiol. Progesterone treatment with serum estradiol maintenance caused a rapid decrease (within 4 h) of total Re, attributable to loss of nuclear Re without a significant change in cytosol Re levels. Removal of estradiol implants resulted in an increase in total Re and cytosol Re at all time periods studied without a significant decrease in nuclear Re until 8 h. Combined estradiol withdrawal and progesterone treatment resulted in lower total Re levels and a more rapid decrease in nuclear Re than with estradiol withdrawal alone. These results demonstrate that progesterone rapidly and selectively decreases nuclear Re levels in rat uterus and suggest that this process is not dependent on cytosol Re or serum estradiol levels.  相似文献   

9.
The gonadal steroids estrogen and progesterone have been shown to have neuroprotective properties against various neurodegenerative conditions. Excessive concentrations of glutamate have been found to exert neurotoxic properties. We hypothesize that estrogen and progesterone provide neuroprotection by the autoregulation of blood and brain glutamate levels. Venous blood samples (10 ml) were taken from 31 men and 45 women to determine blood glutamate, estrogen, progesterone, glucose, glutamate-pyruvate transaminase (GPT), and glutamate-oxaloacetate transaminase (GOT) levels, collected on Days 1, 7, 12, and 21 of the female participants' menstrual cycle. Blood glutamate concentrations were higher in men than in women at the start of menstruation (P < 0.05). Blood glutamate levels in women decreased significantly on Days 7 (P < 0.01), 12 (P < 0.001), and 21 (P < 0.001) in comparison with blood glutamate levels on Day 1. There was a significant decrease in blood glutamate levels on Days 12 (P < 0.001) and 21 (P < 0.001) in comparison with blood glutamate levels on Day 7. Furthermore, there was an increase in blood glutamate levels on Day 21 compared with Day 12 (P < 0.05). In women, there were elevated levels of estrogen on Days 7 (P < 0.05), 12, and 21 (P < 0.001), and elevated levels of progesterone on Days 12 and 21 (P < 0.001). There were no differences between men and women with respect to blood glucose concentrations. Concentrations of GOT (P < 0.05) and GPT (P < 0.001) were significantly higher in men than in women during the entire cycle. The results of this study demonstrate that blood glutamate levels are inversely correlated to levels of plasma estrogen and progesterone.  相似文献   

10.
Daily injections of estradiol or the antiestrogen tamoxifen initially stimulate uterine weight increase and progesterone receptor synthesis, though continued tamoxifen fails to maintain the increased weight. The stimulatory actions of both estradiol and tamoxifen are inhibited or reversed by a single injection of progesterone. It has been hypothesized that progesterone antagonizes estrogen action by reducing estrogen receptor levels, but in the present experiments neither cytoplasmic nor nuclear estrogen receptor was affected. We conclude that progesterone acts at a point beyond estrogen receptor availability or translocation to antagonize estrogen action.  相似文献   

11.
Antagonism of estrogen-induced prolactin release by progesterone   总被引:1,自引:0,他引:1  
Previous work from our laboratory has shown that during the process of nuclear occupancy of the progesterone receptor complex (1-2 h), nuclear estradiol receptors of the anterior pituitary are depleted. The purpose of this study was to determine whether the depletion of nuclear estradiol receptors by progesterone had functional biological significance. The ovariectomized (26 days of age) immature rat was used as the model for analysis of this question. The ability of estradiol to release prolactin from the anterior pituitary was the function chosen to determine the biological significance of the progesterone and estradiol interactions. In response to estradiol exposure (2 micrograms/rat), prolactin release reached peak values from 8 h to 12 h and returned to control levels by 24 h. A second injection of estradiol 13 h after the initial injection stimulated a second increase in serum prolactin at 25 h. This model of two injections of estradiol 13 h apart served to provide adequate levels of anterior pituitary progesterone receptors and elevated serum prolactin levels upon which superimposed progestin modulation could be examined. A single injection of progesterone (0.8 mg/kg BW) 1 h before the second estradiol injection blocked the increase in serum prolactin. This action was a receptor-mediated event because progesterone had no effect without estrogen priming or when the progesterone antagonist RU486 was used. Finally, when the interval between the progesterone and second estradiol injection was extended to 4 h, a time period when progesterone does not deplete pituitary nuclear estrogen receptors, the estrogen-induced increase in serum prolactin was not blocked.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We sampled oviducts and endometria of 27 cynomolgus macaques during the menstrual cycle and measured the concentration of nuclear and cytoplasmic estrogen receptors in these tissues by exchange assay. We assessed the stage of the cycle by correlating serum estradiol (E2) and progesterone (P), as measured by radioimmunoassay, with the morphological condition of the ovaries, oviducts and endometrium of each animal. We have previously identified a series of oviductal stages that reflected the orderly sequence of cytological changes in the oviduct during the cycle, and we normalized receptor measurements to these stages. The amounts of nuclear and cytoplasmic estrogen receptor in both the oviduct and the endometrium were approximately twofold greater in the follicular phase than in the luteal phase. In the follicular phase, elevated receptor levels were associated with oviductal proliferation and differentiation, as well as with endometrial proliferation. During the luteal phase, lowered levels were correlated with atrophy and dedifferentiation in the oviduct, but with hypertrophy and progestational development in the endometrium. When the luteal phase of one cycle ends and the follicular phase of the next begins, it is a decline in serum P, not a rise in serum E2, that precedes the elevation in estrogen receptor level and the onset of proliferation in the oviduct and endometrium. Proliferation of the reproductive tract and elevations in nuclear estrogen receptor levels during the early follicular phase can therefore be viewed as consequences of the release of the system from antagonism by P.  相似文献   

13.
Ubiquitin cross-reactive protein (UCRP) is a functional ubiquitin homolog synthesized by the ruminant endometrium in response to conceptus-derived interferon-tau (IFNtau). Progesterone is required for IFNtau to exert antiluteolytic actions on the endometrium. Therefore, this study was designed to determine whether progesterone is requisite for IFNtau induction of UCRP expression within the ovine uterus. Cyclic ewes were ovariectomized and fitted with intrauterine (i.u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 137.316 (ZK; progesterone receptor antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. In P-treated ewes, roIFNtau increased endometrial UCRP mRNA and protein levels. However, administration of ZK to ewes ablated roIFNtau induction of UCRP. Recombinant ovine IFNtau induced expression of UCRP mRNA in progestinized endometrial luminal (LE) and glandular (GE) epithelium as well as in both stratum compactum and spongiosum layers of the stroma (ST). Progesterone receptor protein was located in endometrial ST, but not in LE and GE from these ewes. Results support the hypothesis that progesterone is required for IFNtau induction of type I IFN-responsive genes, such as UCRP, in the ruminant uterus.  相似文献   

14.
In a previous study, high nuclear estrogen receptor concentrations in the preoptic area (POA) were found on Day 16 of pregnancy to prime females to respond to a subsequent low dose of estradiol benzoate (EB) after hysterectomy-ovariectomy by exhibiting maternal behavior in 48 hr. Receptor concentrations in the POA were found to be higher than those in the hypothalamus (HYP). The present study investigated when nuclear estrogen receptors increase during pregnancy in POA and when the difference in receptor concentrations between POA and HYP occurs. An attempt was made to reproduce these pregnancy changes with a 16-day treatment of estrogen and progesterone in ovariectomized (OVX), nulliparous rats. In Experiment 1, we measured cytosol and nuclear estrogen receptor concentrations in the POA and HYP of female rats during pregnancy. Nuclear receptor concentrations in the POA increased beginning on Day 10, increased again on Day 16, and continued at this high level for the remainder of pregnancy. Nuclear estrogen receptor concentrations in the HYP remained at a lower level throughout most of pregnancy until Day 22 when they increased significantly. In Experiment 2, we tested the maternal behavior and measured estrogen receptor concentrations in OVX, steroid-primed, nulliparous rats after hysterectomy (H) and EB treatment. While 90% of estradiol (E) + progesterone (P)-primed females displayed short-latency maternal behavior 48 hr after H and EB treatment, 46% of E + vehicle (V)-treated controls were maternal. At 0 hr (prior to H and EB treatment), there was a significantly larger nuclear receptor accumulation in the POA but significantly attenuated receptor binding in the HYP. P treatment significantly affected cytosol and nuclear estrogen receptor dynamics. Differences in nuclear estrogen receptor concentrations were shown to be based on the number of available binding sites and not to changes in receptor affinity for estradiol.  相似文献   

15.
Progesterone has synergistic or antagonistic effects on several estrogenic actions. The effects of progesterone on estrogen-induced accelerated ovum transport and on the dynamics of estrogen receptors in the rat oviduct were examined. The involvement of the progesterone receptors in these phenomena was assessed. On Day 1 of pregnancy, rats were treated with estradiol, estradiol plus progesterone, or either one plus the progesterone receptor-blocking agent RU486. Control animals received the oil vehicle alone. The number of eggs remaining in the oviduct was assessed 24 h after treatment. Cytoplasmic and nuclear estrogen receptor levels in the oviduct, as well as plasma concentrations of estradiol and progesterone, were measured at various intervals--up to 11 h and 24 h after treatment, respectively. Accelerated oviductal egg transport induced by estrogen was blocked by the concomitant administration of progesterone. This effect of progesterone was not associated with changes in estrogen circulating levels and was preceded by a reduction in the total amount of estrogen receptors and by a shortened retention of estrogen receptors in the nucleus. The effects of progesterone on egg transport and on the levels of estrogen receptors were reversed by blocking the progesterone receptor with RU486, suggesting that both effects were receptor-mediated. These findings demonstrate that progesterone antagonizes the effect of estrogen on oviductal egg transport in the rat, and suggest that this antagonism is mediated by a reduction both in the amount of estrogen receptors and in their retention time in the nucleus.  相似文献   

16.
A possible role of the uterus in regulating content of luteal prostaglandins (PGs) was investigated. Pseudopregnancy was induced in adult virgin female rats by mating them with vasectomized male rats. On Day 5 of pseudopregnancy, decidualization of the uterus was induced or hysterectomy was performed. As controls, intact pseudopregnant animals with a luteal phase of 13 +/- 1 days were used. Measurements of in vivo tissue levels of PGF2 alpha, PGE2, and 6-keto-PGF1 alpha were performed by RIA after homogenization and extraction procedures in CL of pseudopregnancy and remainder of ovaries on Days 5, 13, and 19. Serum levels of progesterone and 20 alpha-dihydroprogesterone were determined by RIA. In hysterectomized animals, PGF2 alpha levels increased 2.5-fold in corpora lutea on Day 13 compared with levels on Day 5 of pseudopregnancy, but were still lower than in control rats undergoing functional luteolysis on Day 13. Decidual-tissue-bearing rats exhibited low levels of PGF2 alpha on Day 13 of pseudopregnancy. On Day 19, when luteolysis had occurred in decidual-tissue-bearing and hysterectomized rats, as judged by plasma levels of progestins, luteal content of PGF2 alpha was elevated to a similar level as that in control animals undergoing functional luteolysis on Day 13. When data pooled from control, decidual-tissue-bearing and hysterectomized rats were analyzed, a highly significant inverse correlation (r = -0.72, n = 46, p less than 0.001) between luteal PGF2 alpha content and ratio of plasma progestins was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of a progesterone antagonist, lilopristone (ZK 98.734), on induction of menstruation, inhibition of implantation or pregnancy, and termination of early and mid-pregnancy were studied in bonnet monkeys. In the regularly menstruating animals, administration of lilopristone (25 mg/day, s.c.) during the mid-luteal phase (Days 20-22 of the menstrual cycle) induced menstruation within 2-4 days after the initiation of treatment. A premature drop in circulating progesterone levels was also observed. The luteolytic effect of lilopristone was prevented by exogenous treatment with hCG; however, the animals showed premature menstruation, in spite of high progesterone levels (above 4 ng/ml). Treatment around the time of implantation (between Days 8 and 12 after the mid-cycle peak in estradiol levels) in mated animals provided 100% pregnancy protection. Treatment of pregnant animals on Days 30-32 of the menstrual cycle, i.e. about Day 20 after the estradiol peak, induced abortion in 8 of 10 animals. A significant (p less than 0.05) decrease in serum progesterone levels was observed on Day 3 after the initiation of treatment. However, the decrease was slower (slope: -0.36, r: 0.96) compared to that observed in nonpregnant animals (slope: -0.72, r: 0.95). In the other two animals, pregnancy was not affected. However, when the treatment was delayed until about Day 50 after the estradiol peak, all four animals aborted. This study suggests that lilopristone is a progesterone antagonist with a potential to induce menstruation, inhibit nidation, and terminate pregnancy. The antifertility effects are mediated through blocking progesterone action at the endometrium as well as decreasing progesterone bioavailability, which appears to be due to its effects on gonadotropin release.  相似文献   

18.
The oxytocin-induced uterine prostaglandin (PG) F2 alpha response and the levels of endometrial oxytocin receptors were measured in ovariectomized ewes after they had been given steroid pretreatment (SP) with progesterone and estrogen to induce estrus (day of expected estrus = Day 0) and had subsequently been treated with progesterone over Days 1-12 and/or PGF2 alpha over Days 10-12 postestrus. The uterine PGF2 alpha response was measured after an i.v. injection of 10 IU oxytocin on Days 13 and 14, using the PGF2 alpha metabolite, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), as an indicator for PGF2 alpha release. The levels of oxytocin receptors in the endometrium were measured on Day 14. During the treatment with progesterone, the peripheral progesterone concentrations were elevated and remained above 1.8 ng/ml until the morning of Day 14. The PGFM responses to oxytocin in untreated controls and SP controls were low on both Days 13 and 14 whereas the levels of endometrial oxytocin receptors in the same ewes were high. Treatment with progesterone either alone or in combination with PGF2 alpha significantly (p less than 0.04) increased the PGFM response on Day 14 and reduced the levels of endometrial oxytocin receptors; treatment with PGF2 alpha alone had no effect. It is concluded that progesterone promotes the PGFM response to oxytocin while simultaneously suppressing the levels of endometrial oxytocin receptors. PGF2 alpha treatment had no effect on either the uterine secretory response to oxytocin or the levels of oxytocin receptors in the endometrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neurohomonal control of prolactin release was studied in pseudopregnant and pregnant rats. Nembutal administered at 1300 hours on Day 3 of pseudopregnancy prevented prolactin release which normally occurred at 1700 hours of the same day. Antiestrogen administered the day before did not prevent prolactin release but ovariectomy did. Estrogen administered immediately after ovariectomy did not restore prolactin secretion; however, progesterone on Day 3 in the ovariectomized-estrogen treated induced an increase in prolactin at 1700 hours. Progesterone was capable of increasing prolactin release the first 5 days of pseudopregnancy but not Days 6-12 when prolactin values were low. A similar effect was seen the first 7 days of pregnancy. Progesterone, but not estrogen, modified prolactin values on Day 9 at 1700 hours. Ovariectomy on Day 19 of pregnancy induced prolactin release within 4 hours and persisted for 58 hours. Progesterone administration immediately after ovariectomy prevented prolactin release for a few hours. These results suggest that the regulation of prolactin release by the central nervous system depends on the circulating estrogen/progesterone ratio, since estrogen facilitated prolactin release when plasma progesterone was low and progesterone induced prolactin release when adequated levels of estrogen existed, but exerted an inhibitory action when estrogen was not present.  相似文献   

20.
Brown hares were made pseudopregnant by sterile matings or PMSG-hCG treatment (day of mating or hCG injection = Day 0 of pseudopregnancy). Progesterone secretion by the CL began 3-4 days after the ovulatory stimuli, reached maximum on Days 8 to 11 and decreased thereafter to reach low levels from Day 9 to 18, depending on the female. Cauterization of all large ovarian follicles on Day 7 resulted in an immediate luteolysis in young females, but had no effect in older ones. Oestradiol capsules implanted from Day 7 to Day 46 were able to maintain progesterone secretion until at least Day 30, in intact females as well as in females with all large follicles cauterized. Hysterectomy on Day 7 or 8 was followed by an immediate drop in progesterone concentrations; oestradiol capsules implanted at the time of hysterectomy prevented the drop in progesterone values, which remained elevated until Day 38. The induction of ovulation in females hysterectomized 2 months before resulted in CL of slightly shortened life-span. The injection of PGF-2 alpha on Day 7 of pseudopregnancy was followed by an immediate luteolysis. These results suggest that oestradiol secreted by the large ovarian follicles is the main luteotrophic factor in the brown hare. In old hares, the large amount of interstitial tissue could secrete oestrogens, and thus maintain pseudopregnancy. On Day 7 of pseudopregnancy, the uterus secretes a luteotrophic substance acting either directly on the ovary, or via the pituitary, to maintain oestradiol secretion by the follicles. In long-term hysterectomized females, the CL would be able to develop independently of any trophic substance, but for a reduced duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号