首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of photosynthesis in wheat leaves under varyingO2, CO2, and light was studied by analyzing certain metabolitepools and enzyme activities. Under high light when the rateof photosynthesis was limited by low intercellular levels ofCO2 (C1) there was a high level of ribulose-1,5-bisphosphate(RuBP) (about 100 nmols per mg chlorophyll). As C, increased,there was a parallel decrease in the ratios of RuBP/3-phosphoglycerate(PGA) (from 0.18 to 0.08 under 21% O2) and triose-phosphate/PGA(from 0.16 to 0.07 under 21% O2). The results suggest carboxylationis limited at low Ci, and that there is high carboxylation andlimited assimilatory power at high Ci. As photosynthesis increasedwith increasing Jight intensity under atmospheric levels ofCO2 the ratios of RuBP/PGA and triosephosphate/PGA remainednearly constant (near 0.12 to 0.13) suggesting there may bea coordinate regulation by light of the different phases ofthe cycle. There was increasing activation of ribulose 1,5-bisphosphatecarboxylase oxygenase (Rubisco) and fructose 1,6-bisphosphatase(FBPase) with increasing light intensity. The ways in whichthe light activation of the enzymes Rubisco and FBPase may regulatecarbon metabolism in the cycle are discussed. 1 Current address: Biological Sciences Center, Desert ResearchInstitute, PO Box 60220, Reno, Nevada 89506, U.S.A. (Received March 24, 1987; Accepted June 23, 1987)  相似文献   

2.
Lipid peroxidation and the degradation of cytochrome P-450 heme   总被引:8,自引:0,他引:8  
The enzyme content and functional capacities of mesophyll chloroplasts from Atriplex spongiosa and maize have been investigated. Accompanying evidence from graded sequential blending of leaves confirmed that mesophyll cells contain all of the leaf pyruvate, Pi dikinase, and PEP carboxylase activities and a major part of the adenylate kinase and pyrophosphatase. 3-Phosphoglycerate kinase, NADP glyceraldehyde-3-P-dehydrogenase, and triose-P isomerase activities were about equally distributed between mesophyll and bundle sheath cells but other Calvin cycle enzymes were very largely or solely located in bundle sheath cells. In A. spongiosa extracts of predominantly mesophyll origin the proportion of the released pyruvate, Pi dikinase, adenylate kinase, pyrophosphatase, 3-phosphoglycerate kinase, and NADP glyceraldehyde-3-P dehydrogenase retained in pelleted chloroplasts was similar but varied between 30 and 80% in different preparations. The proportion of these enzymes and NADP malate dehydrogenase recovered in maize chloroplast preparations varied between 15 and 35%. Washed chloroplasts retained most of the activity of these enzymes but ribulose diphosphate carboxylase and other Calvin cycle enzyme activities were undetectable. Among the evidence for the integrity of these chloroplasts was their capacity for light-dependent conversion of pyruvate to phosphoenolpyruvate and O2 evolution when 3-phosphoglycerate or oxaloacetate were added. These results support our previous conclusions about the function of mesophyll chloroplasts in C4-pathway photosynthesis and clearly demonstrate that they lack Calvin cycle activity.  相似文献   

3.
The activity and extent of light activation of three photosynthetic enzymes, pyruvate,Pi dikinase, NADP-malate dehydrogenase (NADP-MDH), and fructose 1,6-bisphosphatase (FBPase), were examined in maize (Zea mays var Royal Crest) leaves relative to the rate of photosynthesis during induction and under varying light intensities. There was a strong light activation of NADP-MDH and pyruvate,Pi dikinase, and light also activated FBPase 2- to 4-fold. During the induction period for whole leaf photosynthesis at 30°C under high light, the time required to reach half-maximum activation for all three enzymes was only 1 minute or less. After 2.5 minutes of illumination the enzymes were fully activated, while the photosynthetic rate was only at half-maximum activity, indicating that factors other than enzyme activation limit photosynthesis during the induction period in C4 plants.

Under steady state conditions, the light intensity required to reach half-maximum activation of the three enzymes was similar (300-400 microEinsteins per square meter per second), while the light intensity required for half-maximum rates of photosynthesis was about 550 microEinsteins per square meter per second. The light activated levels of NADP-MDH and FBPase were well in excess of the in vivo activities which would be required during photosynthesis, while maximum activities of pyruvate,Pi dikinase were generally just sufficient to accommodate photosynthesis, suggesting the latter may be a rate limiting enzyme.

There was a large (5-fold) light activation of FBPase in isolated bundle sheath strands of maize, whereas there was little light activation of the enzyme in isolated mesophyll protoplasts. In mesophyll protoplasts the enzyme was largely located in the cytoplasm, although there was a low amount of light-activated enzyme in the mesophyll chloroplasts. The results suggest the chloroplastic FBPase in maize is primarily located in the bundle sheath cells.

  相似文献   

4.
The effect of salinity on C(4) photosynthesis was examined in leaves of maize, a NADP-malic enzyme (NADP-ME) type C(4) species. Potted plants with the fourth leaf blade fully developed were treated with 3% NaCl solution for 5d. Under salt treatment, the activities of pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent malate dehydrogenase (NADP-MDH) and NAD-dependent malate dehydrogenase (NAD-MDH), which are derived mainly from mesophyll cells, increased, whereas those of NADP-ME and ribulose-1,5-bisphosphate carboxylase, which are derived mainly from bundle sheath cells (BSCs), decreased. Immunocytochemical studies by electron microscopy revealed that PPDK protein increased, while the content of ribulose-1,5-bisphosphate carboxylase/oxygenase protein decreased under salinity. In salt-treated plants, the photosynthetic metabolites malate, pyruvate and starch decreased by 40, 89 and 81%, respectively. Gas-exchange analysis revealed that the net photosynthetic rate, the transpiration rate, stomatal conductance (g(s)) and the intercellular CO(2) concentration decreased strongly in salt-treated plants. The carbon isotope ratio (δ(13)C) in these plants was significantly lower than that in control. These findings suggest that the decrease in photosynthetic metabolites under salinity was induced by a reduction in gas-exchange. Moreover, in addition to the decrease in g(s), the decrease in enzyme activities in BSCs was responsible for the decline of C(4) photosynthesis. The increase of PPDK, PEPCase, NADP-MDH, and NAD-MDH activities and the decrease of NADP-ME activity are interpreted as adaptation responses to salinity.  相似文献   

5.
Mesophyll protoplasts and bundle sheath strands were isolated from maize leaves. Light microscopic observation showed the preparations were pure and without cross contamination. Protein blot analysis of mesophyll and bundle sheath cell soluble protein showed that the concentration of pyruvate orthophosphate dikinase (EC 2.7.9.1) is about one-tenth as much in the bundle sheath cells as in mesophyll cells, but about eight times greater than that found in wheat leaves, on the basis of soluble protein. Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was barely detectable in the bundle sheath cells, while ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and NADP-dependent malic enzyme (EC 1.3.1.37) were exclusively present in the bundle sheath cells and were absent in the mesophyll cells. Whereas pyruvate, Pi dikinase was previously considered localized only in mesophyll cells of C4 plants, these results clearly demonstrate the presence of appreciable quantities of the enzyme in the bundle sheath cells of the C4 species maize.  相似文献   

6.
Effects of Nitrogen Nutrition on Photosynthesis in Cd-treated Sunflower Plants   总被引:10,自引:0,他引:10  
Increased nitrogen supply stimulates plant growth and photosynthesis.Since it was shown that heavy metals may cause deficienciesof essential nutrients in plants the potential reversal of cadmiumtoxicity by increased N nutrition was investigated. The effectson photosynthesis of low Cd (0, 0.5, 2 or 5 mmol m-3) combinedwith three N treatments (2, 7.5 or 10 mol m-3) were examinedin young sunflower plants. Chlorophyll fluorescence quenchingparameters were determined at ambient CO2and at 100 or 800 µmolquanta m-2 s-1. The vitality index (Rfd) decreased approx. three-timesin response to 5 mmol m-3Cd, at 2 and 10 mol m-3N. The maximumphotochemical efficiency of PSII reaction centres (Fv/ Fm) wasnot influenced by Cd or N treatment. The highest Cd concentrationdecreased quantum efficiency of PSII electron transport (II)by 30%, at 2 and 10 mol m-3N, mostly due to increased closureof PSII reaction centres (qP). Photosynthetic oxygen evolutionrates at saturating CO2were decreased in plants treated with5 mmol m-3Cd, at all N concentrations. The results indicatethat Cd treatment affected the ribulose-1,5-bisphosphate (RuBP)regeneration capacity of the Calvin cycle more than other processes.At the same time, the amounts of soluble and ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) protein increased with Cd treatment.Decreased photosynthesis, but substantially increased Rubiscocontent, in sunflower leaves under Cd stress indicate that asignificant amount of Rubisco protein is not active in photosynthesisand could have another function. It is shown that optimal nitrogennutrition decreases the inhibitory effects of Cd in young sunflowerplants. Copyright 2000 Annals of Botany Company Helianthus annuus L., cadmium, nitrogen, photosynthesis, Rubisco, sunflower  相似文献   

7.
The photosynthetic characteristics of Eleocharis baldwinii (Torr.)Chapman, an amphibious leafless plant in the Cyperaceae, wereinvestigated in both the terrestrial form and the submergedform of the plant. Anatomical observation of the culm, whichis the photosynthetic organ in this plant, revealed that theterrestrial form has the Kranz type of anatomy, whereas thesubmerged form has an inner structure that is similar to thatof submerged aquatic plants, with a reduction in both the numberand the size of bundle sheath cells and vascular bundles andrelatively well developed mesophyll cells. In 14C-pulse 12C-chaseexperiments with the terrestrial form, 80% of the total fixed14C was incorporated into C4 dicarboxylic acids after a 10-spulse. The radioactivity in the C4 acids decreased rapidly,while that in sucrose increased to 36% during a 120-s chase.In the submerged form, 64% and 30% of the total fixed 14C wasincorporated into C4 acids and phosphate esters, respectively,after a 10-s pulse. The radioactivity of these compounds decreasedrelatively slowly during a 120-s chase. The specific activitieson a chlorophyll basis of C4 photosynthetic enzymes that areinvolved in the NAD-ME subtype were high in the terrestrialform, while they were intermediate between those of C3 and C4plants in the submerged form. The activity of ribulose 1,5-bisphosphatecarboxylase was 1.5 times higher in the submerged form thanin the terrestrial form. By contrast, the activity of carbonicanhydrase exhibited the reverse tendency. Western blot analysisof soluble proteins extracted from the mesophyll cells and thebundle sheath strands of the terrestrial form demonstrated thatribulose 1,5-bisphosphate carboxylase/oxygenase protein waspresent in the mesophyll cells as well as in the bundle sheathcells, with a higher level in the latter, although phosphoenolpyruvatecarboxylase and pyruvate, Pi dikinase proteins were restrictedto the mesophyll cells. In the submerged form, diurnal fluctuationsin levels of malate were observed with significant fixationof CO2 at night. However, the diurnal changes of malate weresmaller than those reported for CAM plants. These data indicatethat the terrestrial form of Eleocharis baldwinii fixes atmosphericCO2 essentially via the C4 pathway, while the submerged formfixes inorganic carbon via a complex metabolic system that resemblesan intermediate between C3 and C4 metabolism in associationwith a CAM-like profile. (Received September 12, 1994; Accepted November 21, 1994)  相似文献   

8.
The activities of enzymes involved in C4 photosynthesis andphotorespiration in colorless parts of variegated leaves ofStenotaphrum secundatum (Walt.) Kuntze were compared with thosein green leaves. Chlorophyll content of the colorless part wasonly about 0.3–3% of that of the green leaves. The activities of chloroplastic enzymes, pyruvate, Pi dikinase,NADP+-malic enzyme and NADP+-glyceraldehyde 3-phosphate dehydrogenasewere considerably lower in colorless tissue on a fresh weightor protein basis (the ratios of the activities in the green/colorlesstissues ranging from 5 to 20). A cytoplasmic enzyme, UDP-glucosepyrophosphorylase as well as aspartate and alanine aminotransferasesshowed comparable activities in the two types of tissue, whereasPEP carboxylase in the colorless tissue had only the one-thirdactivity of that in green tissue. Differences in activitieswere also observed for the glycolate pathway enzymes (the ratiosranging from 2 to 7 for glycolate oxidase, hydroxypyruvate reductaseand serine hydroxymethyltransferase, and 7 to 15 for catalase),while cytochrome c oxidase showed comparable activity in thetwo types of tissue. The results suggest that the deficiency of thylakoid developmentin the colorless tissue influences enzyme activities not onlyin plastids but also in other cellular compartments. 1Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo 113, Japan. (Received March 26, 1986; Accepted June 17, 1986)  相似文献   

9.
Exposure of maize leaves to a 3-hour photoinhibitory treatment (photon flux rate of 2,000 microeinsteins meter−2 second−1, CO2-free air) resulted in lower activities of the light-activated enzymes NADP malate dehydrogenase, pyruvate, Pi dikinase, and ribulose-5-phosphate kinase. The activities could be recovered partially either by incubating enzyme extracts with dithiothreitol or by illuminating the treated leaf in air. Several enzymes which are not light-activated were not affected by the treatment. Ribulose-5-phosphate kinase activity was also reduced when bean plants grown in low light were subjected to a similar photoinhibitory treatment.  相似文献   

10.
Maize ( Zea mays L. Hybrid Sweet Corn, Royal Crest), a C4 plant, was grown under different light regimes, after which the rate of photosynthesis and activities of several photosynthetic enzymes (per unit leaf chlorophyll) were measured at different light intensities. Plants were grown outdoors under direct sunlight or 23% of direct sunlight, and in growth chambers at photosynthetic photon flux densities of about 20% and 8% of direct sunlight. The plants grown under direct sunlight had a higher light compensation point than plants grown under lower light. At a light intensity about 25% of direct sunlight, plants from all growth regimes had a similar rate of photosynthesis. Under saturating levels of light the plants grown under direct sunlight had a substantially higher rate of photosynthesis than plants grown under the lower light regimes. The higher photosynthetic capacity in the plants grown under direct sunlight was accompanied by an increased activity of several photosynthetic enzymes and in the amount of the soluble protein in the leaf. Among five photosynthetic enzymes examined, RuBP carboxylase (EC 4.1.1.39) and pyruvate, Pi dikinase (EC 2.7.9.1) were generally just sufficient to account for rates of photosynthesis under saturating light; thus, these may be rate limiting enzymes in C4 photosynthesis. Pyruvate, Pi dikinase and NADP-malate dehydrogenase (EC 1.1.1.82) were the only enzymes examined which were light activated and increased in activity with increasing light intensity. In the low light grown plants the activity of pyruvate, Pi dikinase closely paralleled the photosynthetic rate measured under different light levels. With the plants grown under direct sunlight, as light intensity was increased the activation of pyruvate, Pi dikinase and NADP+-malate dehydrogenase proceeded more rapidly than photosynthesis.  相似文献   

11.
Abstract Associations between photosynthetic responses to CO2 at rate-saturating light and photosynthetic enzyme activities were compared for leaves of maize grown under constant air temperatures of 19, 25 and 31°C. Key photosynthetic enzymes analysed were ribulose bisphosphatc (RuBP) carboxylase, phosphoenolpyruvate (PEP) carboxylase, NADP-malic enzyme and pyruvate, Pi dikinasc. Rates of CO2-saturated photosynthesis were similar in leaves developed at 19°C and 25°C but were decreased significantly by growth at 31°C. In contrast, carboxylation efficiency differed significantly between all three temperature regimes. Carboxylation efficiency was greatest in leaves developed at 19°C and decreased with increasing temperature during growth. The changes of carboxylation efficiency were highly correlated with changes in the activity of pyruvate, Pi dikinase (r= 0.95), but not with other photosynthetic enzyme activities. The activities of these latter enzymes, including that of RuBP carboxylase, were relatively insensitive to temperature during growth. The sensitivity of quantum yield to O2 concentration was lower in leaves grown at 19°C than in leaves grown at 31°C. These observations support the novel hypothesis that variation in the capacity for CO2 delivery to the bundle sheath by the C4 cycle, relative to the capacity for net assimilation by the C2 cycle, can be a principal determinant of C4 photosynthetic responses to CO2.  相似文献   

12.
Glycerol stabilizes the activity of pyruvate, orthophosphate dikinase extracted from darkened or illuminated maize leaves. It serves as a better protectant of activity than dithiothreitol for the active day-form and the glycerol concentration needed for full protection is inversely related to the level of protein. The night-form of the enzyme is also protected by glycerol not only against inactivation, but also against partial reactivation in storage. Glycerol does not prevent the Pi-dependent activation nor the ADP-dependent inactivation of pyruvate, orthophosphate dikinase, but the rates of both processes are substantially decreased. The ability of the inactive night-form for Pi-dependent activation is also sustained by glycerol for at least 2 h at 20°C, apparently through stabilization of the labile regulatory protein.Abbreviations BSA bovine serum albumin - G-6-P glucose-6-phosphate - MDH malate dehydrogenase - PCMB p-chloromercuribenzoate - PEP phosphoenolpyruvate - PEPCase phosphoenol-pyruvate carboxylase - PPDK pyruvate, orthophosphate dikinase - PVP polyvinylpyrrolidone  相似文献   

13.
Sink-limited conditions, defined as treatment with continuousillumination, cause a reduction in the rate of photosyntheticfixation of CO2 in single-rooted leaves of soybean (Glycinemax. Merr. cv. Turunoko). We suggested previously that thisreduction is due to a deactivation of ribulose-1,5-bisphosphatecarboxylase (RuBPcase, E.C. 4.1.1.39 [EC] ) that is caused by a decreasein the level of Pi in the leaves [Sawada et al. (1989) PlantCell Physiol. 30: 691, Sawada et al. (1990) Plant Cell Physiol.31: 697]. In the present study, the mechanism of regulationof RuBPcase activity by Pi was examined. The activity of RuBPcasein the sink-limited leaves, exposed for 6 or 7 d to continuousillumination to alter the source/sink balance, was enhancedwith increasing concentrations of Pi, in a CO2-free preincubationmedium in the presence of 5 mM MgCl2 The maximum value [6.3µmole CO2 (mg Chl)–1 min–1] was obtained atapproximately 5 mM Pi after a 5 min incubation, being 3 timesof the activity without the preincubation. The activity of acrude preparation of RuBPcase that had been deactivated by removalof CO2 and Mg2+ ions by the gel filtration was 5.2–9.3nmole CO2 (mg protein)–1 min–1 and was also enhancedby Pi plus Mg2+ ions. The maximum value [147–151 nmoleCO2 (mg protein)–1 min–1] was attained at 5 mM Piafter a 5 min incubation. The cycle of activation and inactivationof deactivated crude RuBPcase was perfectly reversible by additionof Pi to the enzyme and removal of Pi from the enzyme. Levelsof free Pi and of esterified phosphate in the sink-limited leaveswere 69% and 31% of the total phosphate, respectively. By contrast,in the control leaves, these values were 87% and 13%, respectively.These results support our previously stated hypothesis and indicatean important role for free Pi in the regulation of RuBPcaseactivity, in particular in sink-limited plants. (Received February 21, 1992; Accepted July 23, 1992)  相似文献   

14.
Abiotic stresses, including nitrogen stress (NS), can hamper photosynthesis and cause oxidative damage to plants. Upregulation of the antioxidative defense system and photosynthesis induced by exogenous glycinebetaine (GB) and humic acid (HA) can mitigate the inhibitory effects of NS on plants. In the present investigation, the beneficial effects of exogenously applied GB and HA were examined on growth, leaf N status, photosynthesis, lipid peroxidation, and activities of some key antioxidant enzymes in the seedlings of maize cv. Zhengdan 958 (ZD958) exposed to NS. NS caused a significant reduction in total dry matter of seedlings of ZD958, but both GB and HA proved effective in mitigating this inhibition, hence, the beneficial effects of GB being more pronounced than those of HA. NS led to a considerable decrease in leaf total N and endogenous GB contents, stomatal conductance (g s), net photosynthetic rate (P n), intercellular CO2 concentration (C i), and activities of two key C4 photosynthesis enzymes phosphoenolpyruvate carboxylase (PEPCase) and ribulose-1,5-bisphosphate carboxylase (RuBPCase) as well as of superoxide dismutase (SOD) and peroxidase (POD). This treatment caused an increase in lipid peroxidation, but showed no effect on POD activity. Exogenous application of varying doses of GB resulted in a decrease in lipid peroxidation and C i, and an increase in leaf total N and endogenous glycinebetaine (EGB) content, P n, and activities of RuBPCase, PEPCase, SOD, and catalase (CAT) under NS. In contrast, application of different doses of HA resulted in a decrease in lipid peroxidation, an increase in P n, g s, and C i as well as SOD, CAT, and POD activities without increasing leaf total N and EGB content, and enhanced RuBPCase and PEPCase activities. The present study suggests that exogenous application of GB and HA can induce tolerance in maize plants to NS, but through the regulation of different mechanisms.  相似文献   

15.
A spectrophotometric procedure for assay of initial and totalactivity of ribulose 1,5-bisphosphate carboxylase in maize leaveswas established. The extraction of the crude enzyme from maizeleaf tissue, which was prefrozen in liquid nitrogen, desaltingof the extract, and assay of the enzyme was completed within3 min. From experiments adding deactivated ribulose 1,5-bisphosphatecarboxylase to the leaf tissue prior to extraction it was estimatedthat the maximum extent of activation during extraction, desaltingand assay was 8%. In predarkened leaves the enzyme showed 67to 84% of maximal activation while in preilluminated leavesthe enzyme showed 89 to 98% of maximal activation. These resultsindicate that deactivation of the enzyme in the dark is nota reason for the previous finding of a transient peak of ribulose1,5-bisphosphate in maize leaves during induction of photosynthesis[Usuda (1985) Plant Physiol. 78: 859–864]. This transientincrease in the substrate level upon illumination might be explainedby the presence of an unknown negative effector for ribulose1,5-bisphosphate carboxylase in vivo in leaf tissue in the dark,or limiting CO2 supply to the enzyme during the induction period. (Received May 30, 1985; Accepted August 16, 1985)  相似文献   

16.
Phosphoenolpyruvate carboxylase, NADP-malate dehydrogenase andNADP-malic enzyme in desalted extracts from the leaves of threesugarcane species differing in cold sensitivity were relativelystable at cold temperatures, and their Arrhenius plots appearedas straight lines. Pyruvate,Pi dikinase (PPDK) from the threespecies was cold-inactivated, and its Arrhenius plots exhibiteda clear break-point around 10.6°C. Analysis of cold labilityof PPDK using deuterium oxide and Triton X-100 showed that theinteractions between the subunits possibly involve hydro-phobicbonds which would lead to cold lability. There were no apparentdifferences among the three sugarcane species in the thermalproperties of the four C4 photosynthetic enzymes. The resultssuggest that the differences in cold sensitivity of sugarcanephotosynthesis may not relate to the thermal properties of C4photosynthetic enzymes per se. 1 Present address: Department of Biochemistry, University ofNebraska, Lincoln, NE 68588-0664, U.S.A.  相似文献   

17.
Photosynthesis is known to occur in rice panicles, but littlehas been reported about the photosynthetic or biochemical characteristicsof such panicles. The estimated gross amount of photo-syntheticallyassimilated CO2 in a panicle is 30% of that in a flag leaf.This result and the good light-intercepting characteristicsof the panicle in the canopy suggest that photosynthesis inthe panicle may contribute significantly to grain filling. Therice panicle is composed of spikelets and of rachis-branchesincluding rachis which have estimated gross rates of photosynthesisduring the 30-day period after anthesis of 130 to 180 and 50to 100 µmol CO2.(mg Chl)–1.h–1, respectively.The corresponding rate for the flag leaf is 180 to 230 µmolCO2.(mg Chl).h. On the basis of Chl, spikeletshave a high photosynthetic capability which is similar to thatof the flag leaf. The activities of ribulose-l,5-bisphosphate carboxylase (RuBPCase),phosphoenolpyruvate carboxylase (PEPCase), and pyruvate.Pi dikinase(PPDK) in spikelets were 129, 220, and 87 µmol.(mg Chl).h,respectively. The activities of PEPCase and PPDK in spikeletswere considerably higher than those in the flag leaf or rachis-branches.Oxygen-insensitive photosynthesis was found only in spikelets.The Km of NaHCO3 for photosynthesis by slices of spikelets inan aqueous solution (0.6 mM) was considerably lower than thatfor slices of flag leaf (4.2 mM). All these results indicatethat spikelets have different photosynthetic characteristicsfrom those of the flag leaf and rachis-branches. The possibilityof C3–C4 intermediate photosynthesis or C4-like photosynthesisin spikelets is discussed. 4Present address: Department of Biochemistry, Faculty of Science,Saitama University, Urawa, 338 Japan (Received February 14, 1990; Accepted June 12, 1990)  相似文献   

18.
The relations of three carbon-assimilating enzymes in maizeto biomass productivity were studied. There was no significantcorrelation between biomass and the amount of fraction I protein(RuBP carboxylase/oxygenase protein). In contrast, both theactivities of phosphoenolpyruvate carboxylase and pyruvate,P1dikinase were highly correlated to the biomass. (Received February 7, 1983; Accepted March 26, 1983)  相似文献   

19.
The N-use efficiency for photosynthesis was higher in a C(4) plant, maize, than in a C(3) plant, rice, including rbcS antisense rice with optimal ribulose-1,5-bisphosphate carboxylase (Rubisco) content for CO(2)-saturated photosynthesis, even when photosynthesis was measured under saturating CO(2) conditions. The N cost for the C(4) cycle enzymes in maize was not large, and the lower amount of Rubisco allowed a greater N investment in the thylakoid components. This greater content of the thylakoid components as well as the CO(2) concentrating mechanism may support higher N-use efficiency for photosynthesis in maize.  相似文献   

20.
Requirements for activation of inactive pyruvate, inorganic phosphate (Pi) dikinase extracted from darkened maize leaves were examined. Incubation with Pi plus dithiothreitol resulted in a rapid recovery of activity comparable to that in illuminated leaves. However, contrary to previous findings, most of this activity (60–95%) was recovered by adding Pi alone. There was no activation with dithiothreitol alone. Dependency on dithiothreitol, in addition to Pi was minimal at about pH 7.5 but was substantial at higher pH. Anaerobic conditions did not enhance Pi-dependent activation. Active enzyme, isolated from illuminated leaves, was inactivated by incubating with ADP and this occurred in the presence of dithiothreitol. ATP and AMP were not effective but ATP may be a corequirment for ADP-dependent inactivation. Enzyme inactivated by ADP required Pi for reactivation. We conclude that interconversion of dithiol and disulfide forms of the enzyme is not critical for the dark/light regulation of pyruvate, Pi dikinase. The primary mechanism apparently involves an ADP-induced transformation to an inactive form which undergoes a Pi-mediated reactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号