首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpine environments are currently relatively free from non‐native plant species, although their presence and abundance have recently been on the rise. It is however still unclear whether the observed low invasion levels in these areas are due to an inherent resistance of the alpine zone to invasions or whether an exponential increase in invasion is just a matter of time. Using a seed‐addition experiment on north‐ and south‐facing slopes (cf. microclimatic gradient) on two mountains in subarctic Sweden, we tested the establishment of six non‐native species at an elevation above their current distribution limits and under experimentally enhanced anthropogenic pressures (disturbance, added nutrients and increased propagule pressure). We found a large microclimatic variability in cumulative growing degree days (GDD) (range = 500.77°C, SD = 120.70°C) due to both physiographic (e.g. aspect) and biophysical (e.g. vegetation cover) features, the latter being altered by the experimental disturbance. Non‐native species establishment and biomass production were positively correlated with GDD along the studied microclimatic gradient. However, even though establishment on the north‐facing slopes caught up with that on the south‐facing slopes throughout the growing season, biomass production was limited on the north‐facing slopes due to a shorter growing season. On top of this microclimatic effect, all experimentally imposed anthropogenic factors enhanced non‐native species success. The observed microclimatic effect indicates a potential for non‐native species to use warm microsites as stepping stones for their establishment towards the cold end of the gradient. Combined with anthropogenic pressures this result suggests an increasing risk for plant invasion in cold ecosystems, as such stepping stones in alpine ecosystems are likely to be more common in a future that will combine a warming climate with persistent anthropogenic pressures.  相似文献   

2.
Broad‐scale threats to floristic diversity in native temperate grasslands are well‐documented and include elevated soil nutrients, changes in disturbance regimes and exotic species. However, fine‐scale variables associated with the presence of native forbs, such as gap size and biomass cover, have received relatively little attention. We conducted a case–control study to determine the relative influence of physical structural dimensions and other fine‐scale variables associated with the presence of native forbs in a modified temperate grassland previously used for domestic grazing. We matched 145 case plots centred on 27 different species of native forbs with 290 control plots not centred on a native forb. For each percentage increase in ground litter cover, dead biomass cover, grass cover or exotic forb cover, or the area of bare ground within 30 cm, the relative odds that a native forb was present vs absent declined by a mean of 10–13%. Living and dead biomass reduces light availability, and the former can also reduce nutrient and water availability. Declines in the presence of native forbs associated with increasing total bare ground may suggest that gap sizes were too small or the soil surface condition too degraded. Our results add to a body of evidence suggesting that native forbs in temperate native grassland are likely to benefit from periodic removal of living and dead grass biomass and a reduction in the cover of exotic forbs.  相似文献   

3.
Question: Do anthropogenic disturbances interact with local environmental factors to increase the abundance and frequency of invasive species, which in turn exerts a negative effect on native biodiversity? Location: Mature Quercus‐Carya and Quercus‐Carya‐Pinus (oak‐hickory‐pine) forests in north Mississippi, USA. Methods: We used partial correlation and factor analysis to investigate relationships between native ground cover plant species richness and composition, percent cover of Lonicera japonica, and local and landscape‐level environmental variables and disturbance patterns in mature upland forests. We directly measured vegetation and environmental variables within 34 sampling subplots and quantified the amount of tree cover surrounding our plots using digital color aerial photography. Results: Simple bivariate correlations revealed that high species richness and a high proportion of herbs were associated with low Lonicera japonica cover, moist and sandy uncompacted soils, low disturbance in the surrounding landscape, and periodic prescribed burning. Partial correlations and factor analysis showed that once we accounted for the environmental factors, L japonica cover was the least important predictor of composition and among the least important predictors of species richness. Hence, much of the negative correlation between native species diversity and this invasive species was explained by soil texture and local and landscape‐level land‐use practices. Conclusions: We conclude that negative correlations between the abundance of invasive species and native plant diversity can occur in landscapes with a gradient of human disturbance, regardless of whether there is any negative effect of invasive species on native species.  相似文献   

4.
There is an enormous body of literature on plant invasions, including many investigations of the types of introduced species that are most likely to invade natural ecosystems. In this study we turn invasion biology upside down, and ask what sort of native species colonise novel anthropogenic habitats such as roadside lawns, infrequently tended road shoulders, railway embankments and fire trails. We quantified species richness and cover in roadside lawns and infrequently tended road shoulders in five regions of New South Wales, Australia. The native vegetation in these regions included sclerophyll forest, fertile and infertile Eucalypt‐dominated woodlands, rainforest, and semi‐arid woodland. We performed a complementary survey of sites spanning five disturbance levels within the region containing sclerophyll forest vegetation. Although many non‐native species were present in disturbed, novel habitats, a total of 136 native species were also found. Most of these native species were in sites with low levels of disturbance (fire trails and railway embankments), but 35 native species were found to colonise roadside lawns, our most highly‐disturbed vegetation type. There was a significant negative relationship between the disturbance level in novel habitats and the number and cover of native species. Native species that colonised novel habitats were disproportionately likely be generalist species whose natural habitat includes both high and low light and high and low disturbance conditions. The native species colonising novel habitats also tended to have traits associated with a fast life‐history, including short stature and small seeds. A surprisingly high number of native plant species are colonising novel, anthropogenic habitats. Our findings highlight the potential importance of urban ecosystems for conservation and restoration biology.  相似文献   

5.
A principal challenge to restoring tree‐invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer‐invaded grasslands of the Oregon Cascades. We quantified the longevity and magnitude of fire effects by comparing ground conditions and the cover and richness of plant species in burn‐scar centers (higher‐intensity fire) and edges (lower‐intensity fire) with adjacent unburned vegetation 7 years after treatment. We interpreted patterns of recovery through the responses of species with differing growth forms, habitat affinities, and clonality. Cover of bare ground remained elevated at the centers, but not at the edges of scars; however, much of this effect was due to gopher disturbance. Total plant cover, consisting entirely of native species, was comparable in and adjacent to scars. However, richness remained depressed at the scar centers. Cover of grass, meadow, and non‐clonal species was comparable in and adjacent to scars, but cover of forb, sedge, residual forest, and clonal species was reduced at the centers. Although scar centers had a simpler community structure (fewer but more abundant species) than the adjacent vegetation, they remained free of exotics and recovered quickly, aided by the soil‐disturbing activities of gophers and the regenerative traits of native, disturbance‐adapted species. Pile burning can be a viable and efficient approach to fuel reduction in the absence of exotics.  相似文献   

6.
Biological invasions are acknowledged among the main drivers of global changes in biodiversity. Despite compelling evidence of species interactions being strongly regulated by environmental conditions, there is a dearth of studies investigating how the effects of non‐native species vary among areas exposed to different anthropogenic pressures. Focusing on marine macroalgae, we performed a meta‐analysis to test whether and how the direction and magnitude of their effects on resident communities and species varies in relation to cumulative anthropogenic impact levels. The relationship between human impact levels and non‐native species impact intensity emerged only for a reduced subset of the response variables examined. Yet, there was a trend for the effects of non‐native species on community biomass and abundance and on species abundance to become less negative at heavily impacted sites. By contrast, the magnitude of negative effects of seaweed on community evenness tended to increase with human impact levels. The hypothesis of decreasing severity of invader’ impacts along a gradient of habitat degradation was also tested experimentally at a regional scale by comparing the effects of the removal of non‐native alga, Caulerpa cylindracea, on resident assemblages among rocky reefs exposed to different anthropogenic pressures. Assemblages at urban and pristine site did not differ when invaded, but did so when C. cylindracea was removed. Our results suggest that, despite the generally weak relationship between human impacts levels and non‐native species impacts, more negative impacts can be expected in less stressful environments (i.e. less degraded or pristine sites), where competitive interactions are presumably the driving force structuring resident communities. Implementing strategies for controlling the establishment of non‐native seaweeds should be, thus, considered a priority for preserving biodiversity in relatively pristine areas. On the other hand, control of invaders at degraded sites could be warranted to lessen their role as propagule sources. Synthesis Local anthropogenic stressors that severely alter biotic and abiotic conditions may underpin context‐dependency in the impacts of biological invasions. We used a meta‐analysis and an experimental test to examine the relationship between cumulative human impacts and ecological impact of non‐native seaweeds on resident assemblages. Our results suggest that more negative impacts of non‐native seaweeds on the abundance and biomass of resident assemblages can be expected in less degraded or pristine sites. Possibly, stronger impacts prevail at pristine sites, where assemblages are mainly structured by biotic interactions. Hence, management efforts should be mostly directed to prevent the establishment and spread of non‐native seaweeds in pristine areas. On the other hand, weak, but positive effects of seaweeds at the most degraded sites add to the ongoing debate on the role of non‐native species in rehabilitation plans.  相似文献   

7.
Non‐native mammals that are disturbance agents can promote non‐native plant invasions, but to date there is scant evidence on the mechanisms behind this pattern. We used wild boar (Sus scrofa) as a model species to evaluate the role of non‐native mammals in promoting plant invasion by identifying the degree to which soil disturbance and endozoochorous seed dispersal drive plant invasions. To test if soil disturbance promotes plant invasion, we conducted an exclosure experiment in which we recorded emergence, establishment and biomass of seedlings of seven non‐native plant species planted in no‐rooting, boar‐rooting and artificial rooting patches in Patagonia, Argentina. To examine the role of boar in dispersing seeds we germinated viable seeds from 181 boar droppings and compared this collection to the soil seed bank by collecting a soil sample adjacent to each dropping. We found that both establishment and biomass of non‐native seedlings in boar‐rooting patches were double those in no‐rooting patches. Values in artificial rooting patches were intermediate between those in boar‐rooting and no‐rooting treatments. By contrast, we found that the proportion of non‐native seedlings in the soil samples was double that in the droppings, and over 80% of the germinated seeds were native species in both samples. Lastly, an effect size test showed that soil disturbance by wild boar rather than endozoochorous dispersal facilitates plant invasions. These results have implications for both the native and introduced ranges of wild boar, where rooting disturbance may facilitate community composition shifts.  相似文献   

8.
Aim Using a long‐term data set we investigated the response of semi‐desert grasslands to altered disturbance regimes in conjunction with climate patterns. Specifically, we were interested in the response of a non‐native grass (Eragrostis lehmanniana), mesquite (Prosopis velutina), and native species to the reintroduction of fire and removal of livestock. Location The study site is located on the 45,360‐ha Buenos Aires National Wildlife Refuge (31°32′ N, 110°30′ W) in southern Arizona, USA. In 1985, livestock were removed and prescribed fires were reintroduced to this semi‐desert grassland dominated by non‐native grasses and encroaching mesquite trees. Methods Plant species cover was monitored along 38, 30‐m transects five times over a period of 15 years. Data were analysed using principal components analysis on the variance–covariance and correlation matrix, multivariate analysis of variance for changes over time in relation to environmental data, and analysis of variance for altered disturbance regimes. Results Reintroduction of fire and removal of livestock have not led to an increase in native species diversity or a decrease in non‐native grasses or mesquite. The cover of non‐native grass was influenced by soil type in 1993. Main conclusions Variability of plant community richness, diversity, and cover over time appear to be most closely linked to fluctuations in precipitation rather than human‐altered disturbance regimes. The effects of altered grazing and fire regimes are likely confounded by complex interactions with climatic factors in systems significantly altered from their original physiognomy.  相似文献   

9.
Predictors for the ecological effects of non‐native species are lacking, even though such knowledge is fundamental to manage non‐native species and mitigate their impacts. Current theories suggest that the ecological effects of non‐native species may be related to other concomitant anthropogenic stressors, but this has not been tested at a global scale. We combine an exhaustive meta‐analysis of the ecological effects of marine non‐native species with human footprint proxies to determine whether the ecological changes due to non‐native species are modulated by co‐occurring anthropogenic impacts. We found that non‐native species had greater negative effects on native biodiversity where human population was high and caused reductions in individual performance where cumulative human impacts were large. On this basis we identified several marine ecoregions where non‐native species may have the greatest ecological effects, including areas in the Mediterranean Sea and along the northwest coast of the United States. In conclusion, our global assessment suggests coexisting anthropogenic impacts can intensify the ecological effects of non‐native species.  相似文献   

10.
The Central Valley of California is noted for its dearth of remnant native grass populations and for low native grass seedling establishment within grasslands now dominated by non‐native annual species. In contrast, remnant populations are common along the coast, and studies have shown an ability for seedlings and adults to compete with non‐native annual grasses. The invasibility of well‐established populations of native grasses in the Central Valley remains unclear. The objectives of this study were to compare the invasibility of native grasses differing in density and species composition and, given the species in this study, to assess the ability of mixes with greater species richness to resist invasion relative to their abilities in monoculture. In the Sacramento Valley of California, six species of native grasses were planted at three densities in monospecific and mixed‐species plots. Percent cover of native perennial and non‐native annual grasses was measured in years 2 and 3, and biomass was sampled in year 5. Native grass biomass and, to a lesser extent, species composition were important in explaining variation in non‐native grass invasibility in the fifth year. Species‐rich treatments did not experience less invasion than would be expected by the proportional invasibility of each species in monoculture. However, invasibility of plots consisting of slower growing, shorter statured species decreased over time, suggesting a successional benefit to diverse communities. This study demonstrates that established stands of native grasses in the Sacramento Valley can resist invasion by non‐native annual grasses and that stand biomass is a particularly important factor in determining invasibility.  相似文献   

11.
Different disturbances in similar habitats can produce unique successional assemblages of plants. We collected plant species composition and cover data to investigate the effects of three common types of disturbances—fire, anthropogenic clearing (‘cleared’), and clearing followed by goat grazing (‘cleared‐and‐grazed’)—on early‐successional coppice (dry forest) community structure and development on Eleuthera, Bahamas. For each disturbance type, both the ground layer (<0.5 m height) and shrub layer (>0.5 m height) were sampled in eight patches (>1 ha) of varying age (1–28 yr) since large‐scale mature coppice disturbance. Overall, plant communities differed among disturbance types; several common species had significantly higher cover in the shrub layer of fire patches, and cleared‐and‐grazed patches exhibited higher woody ground cover. Total percent cover in the shrub layer increased in a similar linear fashion along the investigated chronosequence of each disturbance type; however, cover of the common tree species, Bursera simaruba, increased at a notably slower rate in cleared‐and‐grazed patches. The pattern of increase and subsequent decrease in cover of Lantana spp. and Zanthoxylum fagara in the shrub layer was characterized by longer persistence and higher covers, respectively, in cleared‐and‐grazed patches, which also exhibited low peak cover and fast decline of nonwoody ground cover. Our results suggest that goats may accelerate some aspects of succession (e.g., quickly removing nonwoody ground cover) and retard other aspects (e.g., inhibiting growth of tree species and maintaining early‐successional shrubs in the shrub layer). These effects may lead to different successional trajectories, and have important conservation implications.  相似文献   

12.
Abstract. Changes in species richness and species turnover during secondary succession following experimental disturbance were studied in eight permanent plots in a species‐rich dry heathland in the southern part of the Czech Republic. The treatments applied were sod‐cutting, burning, cutting of above‐ground biomass, and control. The plots were sampled annually between 1992 and 2000; species richness was analysed at three scales, 25 cm × 25 cm, 1 m × 1 m, and 3 m × 3 m. Disturbances resulted in increased species richness. The highest vascular plant richness was attained during the secondary succession after sod‐cutting, where species established on exposed bare ground. Less severe disturbances by burning and cutting also caused a slight increase in the number of vascular plant species. For bryophytes and lichens, the highest increase in the number of species was also found in the sod‐cut plots, where all cryptogams were removed by the disturbance. At the scale of 3 m × 3 m, species richness of both vascular plants and cryptogams peaked in 1995–1996, i.e. 3–4 yrs after the disturbance, and slowly decreased or slightly fluctuated without any trend thereafter. At smaller scales it either peaked later or constantly increased over the entire observation period of 9 yrs. Species mobility, expressed as species accumulation over time, was lower than reported from grasslands. Rates of species turnover, calculated as Jaccard dissimilarity between pairs of consecutive years, corresponded across different scales. This implies that successional dry heathlands have a higher small‐scale mobility than heathlands which are apparently stable at larger scale.  相似文献   

13.
In the northern Great Plains (United States), sites with less than 20% of native species are difficult to restore. We have experimented with a restoration method that shows some promise. It consists of systematically installing simulated small‐scale patches (8.0 m2 in size) over 25% of an old field and then seeding these patches with native species. The working hypothesis is that these patches will generate a constant source of propagules which in time will lead to increases in native species diversity within the surrounding grass matrix. The objective of this paper was to determine whether soil amendments should be used to facilitate the establishment and persistence of native species (primarily forbs) within these patches. We seeded the patches with a mixture of native grass and forb species and applied four soil treatments: P fertilization, C additions, C + P, and a control (no amendments). Results for the first 5 years were as follows: (1) seeded forb richness was mostly unaffected by soil amendments; (2) seeded and nonseeded forb biomass and density were substantially reduced by C additions, whereas they were unaffected or increased under P additions; (3) both seeded and non‐native grass biomass substantially increased with C additions; and (4) there was an inverse relationship between native seeded forbs and non‐native grass biomass. Our conclusions are that: (1) P amendments are a potential tool for enhancing native seeded forb biomass in simulated small‐scale disturbance patches; and (2) C additions, although enhancing seeded grass biomass do not reduce the biomass of non‐native grasses.  相似文献   

14.
高原鼢鼠对高寒草甸植被特征及生产力的影响   总被引:6,自引:0,他引:6  
张堰铭  刘季科 《兽类学报》2002,22(3):201-210
本研究结果表明,高原鼢鼠栖息10年的斑块,植物群落的物种数减少,植物物种多样性指数下降,地上、地下总生物量显降低,单子叶和可利用双子叶植物生物量极显减少,但不可利用双子叶植物生物量显增加。高原鼢鼠去除5年后,斑块内植物群落的单子叶植物物种数增加,而双子叶植物下降,植物群落物种多样性指数下降,地上、地下总生物量显增加,单子叶和可利用双子叶植物生物量增加极显,不可利用双子叶植物生物量显降低。高原鼢鼠栖息10年的斑块,净初级生产量较未栖息地区减少68.98%。高原鼢鼠去除5年后,净初级生产量增加,但仅达到未栖息地区的58.69%。  相似文献   

15.
High‐diversity mixtures of native tallgrass prairie vegetation should be effective biomass feedstocks because of their high productivity and low input requirements. These diverse mixtures should also enhance several of the ecosystem services provided by the traditional monoculture feedstocks used for bioenergy. In this study, we compared biomass production, year‐to‐year variation in biomass production, and resistance to weed invasion in four prairie biomass feedstocks with different diversity: one species – a switchgrass monoculture; five species – a mix of C4 grasses; 16 species – a mix of grasses, forbs, and legumes; and 32 species – a mix of grasses, forbs, legumes, and sedges. Each diversity treatment was replicated four times on three soil types for a total of 48 research plots (0.33–0.56 ha each). We measured biomass production by harvesting all plant material to ground level in ten randomly selected quadrats per plot. Weed biomass was measured as a subset of total biomass. We replicated this design over a five‐year period (2010–2014). Across soil types, the one‐, 16‐, and 32‐species treatments produced the same amount of biomass, but the one‐species treatment produced significantly more biomass than the five‐species treatment. The rank order of our four diversity treatments differed between soil types suggesting that soil type influences treatment productivity. Year‐to‐year variation in biomass production did not differ between diversity treatments. Weed biomass was higher in the one‐species treatment than the five‐, 16‐, and 32‐species treatments. The high productivity and low susceptibility to weed invasion of our 16‐ and 32‐species treatments supports the hypothesis that high‐diversity prairie mixtures would be effective biomass feedstocks in the Midwestern United States. The influence of soil type on relative feedstock performance suggests that seed mixes used for biomass should be specifically tailored to site characteristics for maximum productivity and stand success.  相似文献   

16.
Disturbances, such as fire and grazing, are often claimed to facilitate plant species richness and plant invasions in particular, although empirical evidence is contradictory. We conducted a meta‐analysis to synthesize the literature on how non‐native plant species are affected by disturbances. We explored whether the observed impact of disturbance on non‐native plant communities is related to its type and frequency, to habitat type, study approach (observational or experimental), and to the temporal and spatial scales of the study. To put the results in a broader context, we also conducted a set of parallel analyses on a data set involving native plant species. The diversity and abundance of non‐native plant species were significantly higher at disturbed sites than at undisturbed sites, while the diversity and abundance of native plant species did not differ between the two types of sites. The effect of disturbance on non‐native plant species depended on the measure used to evaluate the impact (species diversity or abundance) and on disturbance type, with grazing and anthropogenic disturbances leading to higher diversity and abundance of non‐native plant species than other disturbance types examined. The impact of disturbance on non‐natives was also associated with study approach, habitat type and temporal scale, but these factors covaried with disturbance type, complicating the interpretation of the results. Overall, our results indicate that disturbance has a positive impact particularly on non‐native plant species (at least when they are already present in the community), and that the strength of this impact depends primarily on the disturbance type. Synthesis Empirical evidence of the effect of disturbances on plant species richness is contradictory. Here we use a meta‐analysis to synthesize the published literature on how different types of disturbances influence the diversity and abundance of plant species, focusing in particular on non‐native plants. Our study supports the hypothesis that disturbances generally facilitate the diversity and abundance of non‐native plant species, although the strength of this facilitation depends primarily on the disturbance type.  相似文献   

17.
Site preparation designed to exhaust the soil seedbank of adventive species can improve the success of tallgrass prairie restoration. Despite these efforts, increased rates of atmospheric nitrogen (N) deposition over the next century could potentially promote the growth of nitrophilic, adventive species in tallgrass restoration projects. We used a field experiment to examine how N addition affected species composition and plant productivity over the first 3 years of a tallgrass prairie restoration that was preceded by the planting of glyphosate‐resistant crops and multiple applications of glyphosate to exhaust the pre‐existing seedbank. We predicted that N addition would increase the percent cover of adventive plant species not included in the original seeding. Contrary to our prediction, only the cover of native species increased with N addition; native non‐leguminous forbs increased substantially, with Conyza canadensis (a weedy native species not part of the restoration seed mix) exploiting the combination of high N and bare ground in the first year, and non‐leguminous forbs (in particular Monarda fistulosa) and native C3 grasses, all of which were seeded, increasing with N addition by the third year. Native legumes was the only functional group that exhibited lower cover in N addition plots than in control plots. There was no significant response by native C4 grasses to N addition, and adventive grasses remained mostly absent from the plots. Overall, our results suggest that site pre‐treatment with herbicide may continue to be effective in minimizing adventive grasses in restored tallgrass prairie, despite future increases in atmospheric N deposition.  相似文献   

18.
Remote island ecosystems are vulnerable to human disturbance and habitat destruction, yet they often have limited capacity to revegetate degraded habitats, especially with native species. To revegetate degraded island habitats, practitioners often rely on importing non‐native species, thereby increasing the number of introduced species on islands. In this study, we investigated the effectiveness of sowing wild collected native seeds and locally sourced treatments for revegetating different eroded soil types (clay, peat, and sand) across the Falkland Islands. A seed mixture of 15 native species was sown with different supportive treatments (sheep dung, sheep dags [woolly off‐cuts], and geotextile matting [coir]) and their combinations. After 1 year, native seeds provided up to 70% plant cover and accrued 1.98 kg/m2 in biomass. Three key native species Elymus magellanicus, Poa flabellata, and Poa alopecurus occurred in 64, 50, and 50% of all sown plots. However, supportive treatments equally facilitated the colonization and establishment of non‐native species. At the same time, there was no difference in native plant cover and biomass across different treatments or soil types, although in the absence of supportive treatments there was little to no revegetation. Thus, locally sourced treatments (i.e. sheep dung and dags) may provide an equally effective but low‐cost alternative to imported treatments (i.e. geotextiles). We further discuss challenges of integrating revegetation using native seeds and livestock grazing on the Falkland Islands. Our study demonstrates that native species and local treatments can provide a rapid approach to revegetating degraded island habitats.  相似文献   

19.
Overabundance of woody plants in semiarid ecosystems can degrade understory herbaceous vegetation and often requires shrub reduction and seeding to recover ecosystem services. We used meta‐analysis techniques to assess the effects of fire and mechanical shrub reduction over two post‐treatment timeframes (1–4 and 5–10 years) on changes in cover and frequency of 15 seeded species at 63 restoration sites with high potential for recovery. Compared to mechanical treatments, fire resulted in greater increases in seeded species. Native shrubs did not increase, and forbs generally declined over time; however, large increases in perennial grasses were observed, suggesting that seeding efforts contributed to enhanced understory herbaceous conditions. We found greater increases in a few non‐native species than native species across all treatments, suggesting the possibility that interference among seeded species may have influenced results of this regional assessment. Differences among treatments and species were likely driven by seedbed conditions, which should be carefully considered in restoration planning. Site characteristics also dictated seeded species responses: while forbs showed greater increases in cover over the long term at higher elevation sites considered to be more resilient to disturbance, surprisingly, shrubs and grasses had greater increases in cover and frequency at lower elevation sites where resilience is typically much lower. Further research is needed to understand the causes of forb mortality over time, and to decipher how greater increases of non‐native relative to native seeded species will influence species diversity and successional trajectories of restoration sites.  相似文献   

20.
Little information exists about the establishment of native longleaf pine flatwoods species for use in restoration efforts and as buffers around natural areas in the southeastern United States. Composition of groundcover in these systems is dominated by perennial graminoid species. Vegetation in current buffers is generally non‐native turfgrass that can escape into natural areas, often reducing establishment and survival of native species. Where management objectives involve actively restoring native groundcover or reducing the probability of invasion by these non‐native turfgrasses, identification of native species and restoration methods is needed. We investigated seed germination and establishment of four species native to longleaf pine flatwoods in central Florida and one species native to the adjacent wetland communities. Paspalum setaceum, Panicum anceps, Eustachys petraea, and Eragrostis refracta were directly seeded, and P. distichum was planted as sprigs into three former P. notatum pastures. Irrigation, fertilization, weed control, and mowing treatments were assessed in terms of cover development of the sown species. Paspalum distichum developed the highest percent cover—over 80% in wet areas after 1 year. Mowing had mixed impacts depending on the species, and fertilization never significantly increased cover. Directly seeded species developed sparse cover (0–40%), probably as a result of drought conditions. However, E. petraea and E. refracta appeared more promising for use on rights‐of‐way when using high sowing rates. A second experiment conducted on a roadside included these two species and sprigged P. distichum. Both E. petraea and P. distichum developed more than 45% cover on the roadside. Establishment of these natives from seed or sprigs was significantly enhanced when site preparation effectively reduced the seedbank of other species present in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号