首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aims: A new real‐time polymerase chain reaction‐based method was developed for the detection of Salmonella enterica in food. Methods and Results: The method consisted of a novel two‐step enrichment involving overnight incubation in buffered peptone water and a 5‐h subculture in Rappaport–Vassiliadis medium, lysis of bacterial cells and a Salmonella‐specific 5′‐nuclease real‐time PCR with an exogenous internal amplification control. Because a two‐step enrichment was used, the detection limit for dead S. enterica cells in artificially contaminated ice cream and salami samples was high at 107 CFU (25 g)?1, eliminating potential false‐positive results. When the method was evaluated with a range of 100 naturally contaminated food samples, three positive samples were detected by both the real‐time PCR‐based method and by the standard microbiological method, according to EN ISO 6579. When the real‐time PCR‐based method was evaluated alongside the standard microbiological method according to EN ISO 6579 with 36 food samples artificially contaminated at a level of 100 CFU (25 g)?1, identical results were obtained from both methods. Conclusions: The real‐time PCR‐based method involving a two‐step enrichment produced equivalent results to EN ISO 6579 on the day after sample receipt. Significance and Impact of the Study: The developed method is suitable for rapid detection of S. enterica in food.  相似文献   

2.
Aim: To report the growth of glucosidase and phospholipase positive bacteria on agar Listeria according to Ottaviani and Agosti (ALOA) different from Listeria monocytogenes, Listeria ivanovii and Bacillus cereus. Methods and Results: Raw water‐buffalo milk was analysed according to EN ISO 11290. Streaking of Fraser broth on ALOA resulted in green colonies with an opaque halo after 48 h at 30°C. Colonies were transferred onto Tryptone soya yeast extract agar and showed cultural characteristics atypical for L. monocytogenes. Results of confirmation tests according to EN ISO 11290 method: negative haemolysis test, weak positive camp test in correspondence with Staphylococcus aureus, no fermentation of rhamnose, fermentation of xylose. Gram staining showed tapered, curved, Gram‐positive rods with subterminal to terminal ellipsoidal spores, 0·5–0·7 μm diameter 4–5 μm. API 50CH CHB kit (99·9% percentage of identification) and the sequence of the 833 bp PCR product (portion of 16S rRNA, generic primers 1492‐r; p27‐f) showed 97% identity with Bacillus circulans ATCC 4513 (GenBank AY724690 ). Conclusions: Some B. circulans strains can grow on ALOA, according to ISO 11290, confirmation tests readily differentiate B. circulans from L. monocytogenes. Significance and Impact of the Study: The different morphology of the colonies must be kept in mind to select true L. monocytogenes for confirmation test and to avoid overestimation of L. monocytogenes count.  相似文献   

3.
Aims: Detectability of Listeria monocytogenes at 100 CFU per food sample in the presence of Listeria innocua using standard microbiological detection was evaluated and compared with the real‐time PCR‐based method. Methods and Results: Enrichment in half‐Fraser broth followed by subculture in Fraser broth according to EN ISO 11290‐1 was used. False‐negative detection of 100 CFU L. monocytogenes was obtained in the presence of 101 CFU L. innocua per sample using the standard detection method in contrast to more than 105 CFU L. innocua per sample using real‐time PCR. Identification of L. monocytogenes on the chromogenic medium by the standard procedure was impossible if L. innocua was able to overgrow L. monocytogenes by more than three orders of magnitude after the enrichment in model samples. These results were confirmed using naturally contaminated food samples. Conclusions: Standard microbiological method was insufficient for the reliable detection of 100 CFU L. monocytogenes in the presence of more than 100 CFU of L. innocua per sample. On the other hand, if the growth of L. monocytogenes was sufficient to reach the concentration equal to the detection limit of PCR, the amount of the other microflora present in the food sample including L. innocua was not relevant for success of the PCR detection of L. monocytogenes. Significance and Impact of the Study: After the enrichment, the PCR detection is more convenient than the standard one as PCR detection is not compromised by other present microflora.  相似文献   

4.
Aims: This study was designed to evaluate the usefulness of quantification by real‐time PCR as a management tool to monitor concentrations of Legionella spp. and Legionella pneumophila in industrial cooling systems and its ability to anticipate culture trends by the French standard method (AFNOR T90‐431). Methods and Results: Quantifications of Legionella bacteria were achieved by both methods on samples from nine cooling systems with different water qualities. Proportion of positive samples for L. pneumophila quantified by PCR was clearly lower in deionized or river waters submitted to a biocide treatment than in raw river waters, while positive samples for Legionella spp. were quantified for almost all the samples. For some samples containing PCR inhibitors, high quantification limits (up to 4·80 × 105 GU l?1) did not allow us to quantify L. pneumophila, when they were quantified by culture. Finally, the monitoring of concentrations of L. pneumophila by both methods showed similar trends for 57–100% of the samples. Conclusions: These results suggest that, if some methodological steps designed to reduce inhibitory problems and thus decrease the quantification limits, could be developed to quantify Legionella in complex waters, the real‐time PCR could be a valuable complementary tool to monitor the evolution of L. pneumophila concentrations. Significance and Impact of the Study: This study shows the possibility of using real‐time PCR to monitor L. pneumophila proliferations in cooling systems and the importance to adapt nucleic acid extraction and purification protocols to raw waters.  相似文献   

5.
Aim: The aim of this study was to develop a multiplex real‐time PCR assay for the identification and discrimination of Erysipelothrix rhusiopathiae, tonsillarum and Erysipelothrix sp. strain 2 for direct detection of Erysipelothrix spp. from animal specimens. Methods and Results: A primer set and three species‐specific probes with different end labelling were designed from the noncoding region downstream of the 5S rRNA coding region. The sensitivity, specificity and repeatability of the assay were validated by analysing 27 Erysipelothrix spp. reference serotype strains and ten septicemia‐associated non‐Erysipelothrix spp. bacterial isolates. Cross‐reactivity with Erysipelothrix sp. strain 1 was not observed with any of the primer probe combinations. The detection limit was determined to be <10 colony forming units and as low as one genome equivalent per PCR . Further evaluation of the Erysipelothrix spp. multiplex PCR was performed by comparing an enrichment isolation culture method and a conventional differential PCR on 15 samples from pigs experimentally inoculated with Erysipelothrix spp. and 22 samples from pigs with suspected natural infection. Conclusion: The multiplex real‐time PCR assay was found to be simple, rapid, reliable, specific and highly sensitive. Significance and Impact of the Study: The developed real‐time multiplex PCR assay does not require cumbersome and lengthy cultivation steps prior to DNA extraction, obtained comparable results to enrichment isolation, and will be useful in diagnostic laboratories for rapid detection of Erysipelothrix spp.  相似文献   

6.
Aims: The present study aimed to develop a colony hybridization method for the exhaustive detection and isolation of diarrhoeagenic Escherichia coli (DEC) from samples containing numerous coliform bacteria. Methods and Results: Digoxigenin‐labelled DNA probes were designed to detect seven pathotypes of DEC based on type‐specific genes. A total of 615 meat, food and faeces samples identified as DEC‐positive by multiple real‐time PCR for the virulence genes (eae, stx, elt, est, virB, aggR, afaB and astA) were analysed by a colony hybridization method, which involved filtering enrichment cultures through hydrophobic grid‐membrane filters. DEC were isolated from 72·5% (446/615) of samples by the colony hybridization method but were only detected in 26·3% (162/615) of samples by a conventional culture method. The hybridization method was particularly effective for isolating low‐level contaminants, such as enterotoxigenic and Shiga toxin‐producing E. coli, which were isolated from 51·8% (58/112) of samples identified as positive by PCR for the enterotoxin genes, in contrast to only 4·5% (5/112) of samples analysed by the conventional method. Conclusions: The developed colony hybridization system allows for the efficient and simultaneous isolation of all DEC pathotypes. Significance and Impact of the Study:  The colony hybridization system described here permits the sensitive isolation of DEC and represents a suitable tool for ecological investigations of DEC.  相似文献   

7.
Aims: To identify the optimal method for detection of thermophilic Campylobacter at various stages in the food chain, three culture‐dependent (direct plating, Bolton and Preston enrichment) and one molecular method (qPCR) were compared for three matrices: poultry faeces (n = 38), neck skin (n = 38) and packed fresh meat (n = 38). Methods and Results: Direct plating was compared to enrichment with either Bolton broth (ISO 10272:2006‐1) or Preston broth, followed by culture on two selective agars: modified charcoal cefoperazone desoxycholate agar (mCCDA) and Campyfood agar (CFA). Direct plating on CFA provided the highest number of positive samples for faeces and neck skin samples. Enrichment of meat samples in Preston followed by plating on mCCDA gave significantly higher number of positives than the recommended ISO method. Real‐time qPCR yielded the highest number of positive samples. Conclusion: Direct plating on CFA is optimal for Campylobacter isolation from highly contaminated samples such as faeces or neck skin. When enrichment is required for less‐contaminated samples such as poultry meat, Preston broth is the best choice. The maximum of detectable cells predicted by qPCR is a sensitive and powerful evaluation tool. Significance and impact of the study: The recommended ISO protocol had the least sensitivity, and application of this method could result in underreporting. We detected a high prevalence of Campylobacter on packed meat to be distributed, which suggests this is still a significant risk for consumers.  相似文献   

8.
Aims: This study estimated the incidence of non‐O157 verocytotoxigenic Escherichia coli (VTEC) in farm pasture soils and investigated the survival of non‐O157 VTEC in clay and sandy loam soils. Methods and Results: Twenty farms were tested over a 12‐month period by sample enrichment in tryptone soya broth plus vancomycin, followed by PCR screening for the presence of vt1 and vt2 genes. Of the 600 soil samples, 162 (27%), across all farms, were found to contain vt1 and/or vt2 genes. The enrichment cultures from the 162 PCR‐positive samples were plated onto Chromocult tryptone bile X‐glucuronide agar (TBX), presumptive VTEC colonies recovered, confirmed as VTEC by PCR and serotyped. Samples of the two predominant soil types in Ireland (clay and sandy) were homogenized, characterized in terms of pH, boron, cobalt, copper, potassium, magnesium, manganese, phosphorus, zinc and organic matter content, inoculated with washed suspensions of eight non‐O157:H7 soil isolates and six bovine faecal isolates and stored at 10°C for up to 201 days. Inoculum survival rates were determined at regular intervals by recovering and plating soil samples on TBX. All inoculated non‐O157 serotypes had highest D‐values in the sandy loam soil with D‐values ranging from 50·26 to 75·60 days. The corresponding range in clay loam soils was 31·60–48·25 days. Conclusions: This study shows that non‐O157 VTEC occur widely and frequently in pasture soils and can persist in such environments for several months, with considerable opportunity for recycling through farm environments, and cattle, with clear potential for subsequent transmission into the human food chain. Significance and Impact of the Study: This is the first such study of non‐O157 VTEC in farm soils and found that these VTEC are frequent and persistent contaminants in farm soils. In light of recent epidemiological data, non‐O157 VTEC should be seen as an emerging risk to be controlled within the food chain.  相似文献   

9.
Aims: To develop a real‐time PCR assay targeting the Escherichia coli flagellar antigen H21 for identification and surveillance of clinically important Shiga toxin‐producing E. coli (STEC) serotypes classified in seropathotype C. Methods and Results: The fliC allele of STEC O91:H21 strain B2F1 was amplified and sequenced. The nucleotide sequence obtained was compared with fliC genes of E. coli O157:H21, O8:H21 and O113:H21 strains. A pair of oligonucleotide primers and a TaqMan® minor groove binder probe specific for fliC‐H21 were designed and used in a 5′‐nuclease PCR assay. This method was evaluated using a panel of 138 diverse bacterial strains and was shown to be 100% specific for H21. PCR amplification of fliC‐H21 from one cell per reaction mixture was possible, and an initial inoculum of 10 STEC H21 colony‐forming units per 25 g of ground beef was detected after overnight enrichment. Conclusions: The PCR assay developed was found to be highly sensitive and specific for the identification and detection of E. coli H21 strains in ground beef. Significance and Impact of the Study: The real‐time PCR assay targeting the H21 flagellar antigen described here offers a valuable method for the rapid detection and molecular typing of pathogenic STEC H21 strains in food.  相似文献   

10.

Background  

A real-time multiplex PCR assay was developed for the detection of multiple Salmonella serotypes in chicken samples. Poultry-associated serotypes detected in the assay include Enteritidis, Gallinarum, Typhimurium, Kentucky and Dublin. The traditional cultural method according to EN ISO 6579:2002 for the detection of Salmonella in food was performed in parallel. The real-time PCR based method comprised a pre-enrichment step in Buffered Peptone Water (BPW) overnight, followed by a shortened selective enrichment in Rappaport Vasilliadis Soya Broth (RVS) for 6 hours and subsequent DNA extraction.  相似文献   

11.
In Europe, alternative methods for the detection of food-borne pathogens can be used instead of the standard ISO/CEN reference protocol, if validated according to the protocol outlined in ISO 16140, 2003. In this study, the performance of two novel methods for the detection of Salmonella sp. using real-time PCR technology in tandem with an adapted two-step enrichment protocol were assessed and validated against a reference culture method, ISO 6579, 2004. The DNA and RNA real-time PCR assays amplified a 270 bp region of the hilA gene of Salmonella enterica serovars, and incorporated an internal amplification control (IAC) which was co-amplified with the hilA gene to monitor potential PCR inhibitors and ensure successful amplification. The inclusivity and exclusivity of the hilA primer set was examined for both the DNA and RNA methods and detected the 30 S. enterica serovars but not the 30 non-salmonellae strains. The inoculation of meat carcass swabs with five different S. enterica serovars at five different inocula, indicated both PCR methods were able to detect between 1 and 10 CFU per carcass swab. The real-time DNA PCR assay performed as well as the traditional cultural method in detecting Salmonella sp. in artificially contaminated salad, chocolate, fish and cheese samples. The relative accuracy, relative sensitivity and relative specificity of the DNA PCR real-time method were determined to be 98.5, 98.1 and 100%, respectively. The DNA method was further validated in a collaborative inter-laboratory trial according to ISO 16140, 2003. The validated methods provide an accurate means for the rapid detection and tracking of S. enterica serovars giving equivalent results to the standard method within three days, thus providing an alternative testing method to the reference microbiological method. The real-time PCR methodology not only offers significant time-saving advantages compared to traditional methods, it can also be applied to a wide range of samples types.  相似文献   

12.
Aims: In this study, a real‐time quantitative polymerase chain reaction (PCR) method was examined for its ability to quantify Campylobacter spp. in chicken carcass rinses and compared with bacteriological culturing. Methods and Results: The linearity of the real‐time PCR quantification protocol was assessed on pure DNA. The amplification efficiency was 100% and the square regression coefficient (R2) was 0·998. Quantification was linear over at least 7 log units. Using a crude cell lysate gave the highest sensitivity and the detection limit of the method was 3·3 log CFU per carcass. The statistical correlation between the bacteriological enumeration and the real‐time quantitative (Q)‐PCR determined using chicken carcasses sampled at the end of the slaughter line was 0·733. The difference in detection levels was probably because of the detection of stressed, dead or viable but not culturable cells by Q‐PCR. Conclusion: The real‐time Q‐PCR method described in this study is a powerful tool for determining the number of Campylobacter cells on carcasses. Significance and Impact of the Study: The real‐time Q‐PCR method is available to quantify the Campylobacter contamination at the slaughterhouse level and could be used to evaluate primary production.  相似文献   

13.
Aims: Classic virological tests are time consuming and labour‐intensive; real‐time RT‐PCR has proven to be a fast method to detect and quantify enterovirus genomes in clinical and environmental samples. This method is unable to discriminate between infective and noninfective enterovirus particles; few clinical studies have compared real‐time RT‐PCR and viral culture. We wondered if the enterovirus genome quantification could be correlated to the infectivity. Methods and Results: We used the statistical approach to verify our hypotheses to correlate data, obtained by the standard method (most probable number of cytopathic units—MPNCU) and molecular test (real‐time RT‐PCR), on wastewater treatment plant samples. Chi‐squared test was used, considering several cut‐off values (‘50’‐‘100’‐‘200’ genome copy numbers), to determine statistical significance in comparison of the two methods. Chi‐square value was not significant when cut‐off of 50 (P = 0·103) and 100 (P = 0·178) was assumed but was significant with cut‐off of 200 (P = 0·044). Conclusion: This limit, 200 genome copy, could be used as cut‐off value to indicate enterovirus survival in environmental monitoring. Significant and Impact of the Study: To introduce a fast procedure that is able to compensate for disadvantages of cell culture method for viral environmental analyses.  相似文献   

14.
Aim: To develop a multiplex real‐time PCR assay for the detection and differentiation of Moraxella bovis (M. bovis), M. bovoculi and M. ovis. Methods and Results: The multiplex real‐time PCR assay was validated on three reference strains, 57 pure culture isolates and 45 lacrimal swab samples. All reference strains were identified correctly with no cross‐reactions between species. Sequencing of 53 of the 57 culture isolates confirmed the results obtained with the multiplex real‐time PCR, and the assay had 96·5% (55/57) concordance with a Moraxella spp. multiplex conventional PCR assay on the isolates. Among the lacrimal swab samples, the concordance between the multiplex real‐time PCR and culture was 86·7% (39/45) for M. bovoculi and 75·6% (34/45) for M. bovis. Conclusions: The multiplex real‐time PCR assay is specific and sensitive and can be used directly on lacrimal swab samples. Significance and Impact of Study: The lack of a rapid, specific and sensitive detection method is a barrier for determining the roles of M. bovis, M. bovoculi and M. ovis in infectious bovine keratoconjunctivitis cases, and the developed PCR assay will contribute to improved understanding of the epidemiology and pathogenesis of these three Moraxella species.  相似文献   

15.
Aim: To develop a real‐time PCR‐based strategy for the detection of Paenibacillus larvae vegetative cells and spores to improve the diagnosis and the screening of American foulbrood (AFB), the most harmful pathology of honeybee brood. Methods and Results: A real‐time PCR that allowed selective identification and quantification of P. larvae 16S rRNA sequence was developed. Using standard samples quantified by flow cytometry, detection limits of 37·5 vegetative cells ml?1 and 10 spores ml?1 were determined. Compared to spread plate method, this real‐time PCR‐based strategy allowed, in only 2 h, the detection of P. larvae in contaminated honeys. No false‐positive results were obtained. Moreover, its detection limit was 100 times lower than that of the culture method (2 vs 200 spores g?1 of honey). Conclusion: A rapid, selective, with low detection limit, sensitive and specific method to detect and quantify vegetative cells and spores of P. larvae is now available. Significance and Impact of Study: In addition to honey samples, this real‐time PCR‐based strategy may be also applied to confirm AFB diagnosis in honeybee brood and to screen other apiary supplies and products (bees, pollen, wax), thus broadening the control of AFB spreading.  相似文献   

16.
The polymerase chain reaction (PCR) based detection of blackleg and soft rot erwiniae involves pre‐PCR processing steps which may compromise the sensitivity of detection. The aim of this study was to standardize these various steps to develop reproducible diagnostic PCR protocol for the detection of the three known soft rot erwiniae as they occur in the tuber, singly or in combination. Comparison of tuber peel and stolon end tissue as a starting material for enrichment of the bacteria indicated that tuber peel samples resulted in more representative and sensitive detection of the strains than extract from stolon end tissues. Substances of potato origin in the peel extract were found to be highly inhibitory to the PCR. Addition of the antioxidant Dethiotreitol to the samples before enrichment did not have any significant effect on detection during the 24 h period incubation of the peel extract at room temperature. Bulk washing of tubers with one rotten tuber included with the working sample caused surface contamination on 67–91% of the healthy tubers. Washing tubers individually circumvents the problem. The optimum temperature for enrichment of all the three strains was 27°C. At 37°C, Pectobacterium carotovorum failed to be detected while PCR on Pectobacterium atrosepticum and isolates of Dickeya spp. always produced amplification of the specific DNA fragments. Viability test on Nutrient Agar showed that only Dickeya isolates were viable after 48 h of incubation at 37°C suggesting that the detection of P. atrosepticum at 37°C was from dead or non‐viable cells. Post cell death detection experiment further confirmed that DNA was amplified from dead cells of all the strains at 27°C and 33°C whereas at 37°C, only DNA from dead cells of isolates of Dickeya and P. atrosepticum were amplified. There was no amplification from the dead cells of all isolates of P. carotovorum following the 48 h post death incubation at 37°C. The reason for this difference in post death longevity is not clear at this stage.  相似文献   

17.
18.
Aims: The study describes the development of simple and rapid DNA extraction method in combination with loop‐mediated isothermal amplification (LAMP) to detect enterotoxigenic Staphylococcus aureus in food samples. Methods and Results: In this study, isolation of genomic DNA of enterotoxigenic Staph. aureus from spiked milk, milk burfi, khoa, sugarcane juice and boiled rice was carried out by boiling the isolated sample pellets for 10 min with 1% Triton X‐100. The isolated DNA was evaluated by polymerase chain reaction (PCR) and LAMP method. The LAMP was found to be 100 times more sensitive than PCR. The LAMP assay was very specific for Staph. aureus, and the presence of other contaminating bacterial DNAs and food matrix did not interfere or inhibit the LAMP assay. Conclusions: The template DNA extraction method developed in this study for food samples is simple, rapid and cost‐effective. LAMP was found to be less sensitive to matrix effect of food, compared to PCR. Significance and Impact of the Study: The method is suitable for direct detection of Staph. aureus without any enrichment in contaminated food samples and hence finds its application in food safety analysis, in permutation with LAMP.  相似文献   

19.
The one‐step real‐time turbidity loop‐mediated isothermal amplification assay (RealAmp) was developed to detect Hosta virus X (HVX), the most devastating threat to hosta industry. The reaction was performed in a single tube at 63°C for 15 min, and real‐time turbidimetry was used to monitor the amplification results. Specificity and sensitivity analyses demonstrated that this RealAmp method was sensitive as real‐time TaqMan RT‐PCR and about 100‐fold higher than conventional RT‐PCR with no cross‐reaction with other viral pathogens. Field samples detection showed that HVX could be identified effectively with this method. Overall, this RealAmp assay for HVX detection was simple, specific, sensitive, convenient and time‐saving and could assist in the quarantine measures for prevention and control of the disease caused by HVX.  相似文献   

20.
Aim: To develop a rapid real‐time PCR method for the specific detection and quantification of Bacillus thuringiensis var. israelensis (Bti) spores present in the environment. Methods and Results: Seven soil samples as well as one sediment sample obtained from various regions of Switzerland and characterized by different granulometry, pH values, organic matter and carbonate content were artificially inoculated with known amounts of Bti spores. After DNA extraction, DNA templates were amplified using TaqMan real‐time PCR targeting the cry4Aa and cry4Ba plasmid genes encoding two insecticidal toxins (δ‐endotoxins), and quantitative standard curves were created for each sample. Physicochemical characteristics of the samples tested did not influence DNA extraction efficiency. Real‐time PCR inhibition because of the presence of co‐extracted humic substances from the soil was observed only for undiluted DNA extracts from samples with very high organic matter content (68%). The developed real‐time PCR system proved to be sensitive, detecting down to 1 × 103 Bti spores per g soil. One‐way analysis of variance confirmed the accuracy of the method. Conclusions: Direct extraction of DNA from environmental samples without culturing, followed by a specific real‐time PCR allowed for a fast and reliable identification and quantification of Bti spores in soil and sediment. Significance and Impact of the Study: The developed real‐time PCR system can be used as a tool for ecological surveys of areas where treatments with Bti are carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号