首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has become increasingly apparent that the high molecular mass glycosaminoglycan, hyaluronan (HA), is required for many morphogenetic processes during vertebrate development. This renewed understanding of the various developmental roles for HA, has come about largely through the advent of gene targeting approaches in the mouse. To date, mutations have been engineered in the enzymes responsible for biosynthesis and degradation and for those proteins that bind to HA within the extracellular matrix and at the cell surface. Collectively, the phenotypes resulting from these mutations demonstrate that HA is critical for normal mammalian embryogenesis and for various processes in postnatal and adult life (Table 1). In this article we will review our progress in understanding the biological functions for HA through targeted mutagenesis of the HA synthase 2 (Has2) and 3 (Has3) genes. Data that has been obtained from a conventional targeted disruption of the Has2 gene, is presented in an accompanying review by Camenisch and McDonald. More specifically, in this review we will provide an overview of the conditional gene targeting strategy being used to create tissue-specific deficiencies in Has2 function, along with our progress in understanding the role for Has3-dependent HA biosynthesis. Published in 2003.  相似文献   

2.
Several reports have shown that a number of cytokines such as tumor necrosis-α (TNF-α), interferon-γ (IFN-γ), and interleukin-β (IL-1β) are capable to induce hyaluronan sinthases (HASs) mRNA expression in different cell culture types. The obvious consequence of this stimulation is a marked increment in hyaluronan (HA) production. It has been also reported that oxidative stress, by itself, may increase HA levels. The aim of this study was to evaluate how TNF-α, IFN-γ,IL−1β, and exposition to oxidative stress may modulate HAS activities in normal human skin fibroblasts. Moreover, the effects on HAS mRNA expression of the concomitant treatment with cytokines and oxidants, and the HA concentrations after treatments, were studied. TNF-α, IFN-γ, and IL-1β were added to normal or/and exposed to FeSO4 plus ascorbate fibroblast cultures and HAS1, HAS2 and HAS3 mRNA content, by PCR-real time, was assayed 3,h later. HA levels were also evaluated after 24,h incubation. The treatment of fibroblasts with cytokines up-regulated HASs gene expression and increased HA production. IL-1β induced HAS mRNA expression and HA production more efficiently than TNF-α and IFN-γ. The exposition of the fibroblasts with the oxidant system markedly increased HAS activities while slightly HA production. The concomitant treatment of cells with the cytokines and the oxidant was able to further enhance, in a dose dependent way, with synergistic effect on HAS mRNA expression. On the contrary HA levels resulted unaffected by the concomitant treatment, and resemble those obtained with the exposure to FeSO4 plus ascorbate only. This lack in HA production could be due to the deleterious action of free radicals on the HA synthesis.  相似文献   

3.
透明质酸酶是能降解透明质酸及部分糖胺聚糖的一类糖苷酶,可应用于医疗和美容等领域。透明质酸酶也可用于制备小分子糖胺寡糖,许多研究发现小分子糖胺寡糖具有比大分子糖胺聚糖更高的生物免疫活性。为便于研究人员对透明质酸酶进行进一步的基础研究及应用研究,本文介绍了透明质酸和透明质酸酶,梳理了透明质酸酶的分类、结构和催化机理,归纳总结了透明质酸酶的酶活力测定方法、重组表达、酶学性质和应用,展望了透明质酸酶的研究方向。  相似文献   

4.
The critical hyaluronan binding motif (HABM) in sialoprotein associated with cones and rods (SPACR) has already been determined. As sialoproteoglycan associated with cones and rods, another interphotoreceptor matrix molecule, binds to chondroitin sulfate and heparin with or without the employment of HABMs, respectively, we evaluated and compared the binding of these glycosaminoglycans to SPACR. A western blotting study in combination with inhibition assays showed that heparin bound specifically to SPACR. A series of GST fusion proteins covering the whole SPACR molecule narrowed down the region responsible for the binding. Finally, a site-directed mutagenesis assay demonstrated that the critical HABM also acts as a specific binding site for heparin. These results were supported with mutual inhibitions by hyaluronan and heparin in analyses using GST fusion proteins and native SPACR derived from retina. Thus, these glycosaminoglycans bind to SPACR in a different manner than to sialoproteoglycan associated with cones and rods. The competitive binding between hyaluronan and heparin to SPACR, mediated through the identical HABM, may dominate the functions of SPACR, in turn involving physiological and pathological processes involved in retinal development, aging and other related disorders.  相似文献   

5.
6.
Molecular mechanisms and genetics of hyaluronan biosynthesis   总被引:6,自引:0,他引:6  
Hyaluronan is an extremely important polysaccharide from both the biological and commercial points of view. This review summarizes the present state of the art concerning the polymer and our understanding of the molecular mechanisms of its synthesis with emphasis on the implications of this understanding for polysaccharide engineering of hyaluronan.  相似文献   

7.
交联透明质酸凝胶中交联剂的HPLC测定   总被引:1,自引:1,他引:0  
目的建立交联透明质酸钠凝胶中交联剂二乙烯基砜(DVS)残留量的测定方法。方法用高效液相色谱法测定DVS残留量,色谱条件为:色谱柱为C8(4.6mm×250mm),流动相为25mmol/L磷酸二氢钾溶液(pH3.0)-乙腈(90∶10),检测波长为210nm。结果DVS在1~50μg/g范围内线性关系良好(r=0.9997),平均回收率98.4%,RSD为1.02%。结论用高效液相色谱法测定交联透明质酸钠凝胶中DVS残留量,方法准确、可靠,可用于产品质量控制。  相似文献   

8.
透明质酸是一种酸性粘多糖,其特有的粘弹性使其广泛应用于眼科手术等医药领域。使用高级流变扩展系统研究浓度对于透明质酸溶液流变性能的影响。结果表明,透明质酸溶液的粘度随剪切速率的增加而减小。在任何剪切速率作用下,粘度总是与浓度呈正相关。而随着浓度的增加,溶液粘性与弹性频率交叉点降低。  相似文献   

9.
It is appropriate that this review should appear in a volume dedicated to Mert Bernfield. Much of my interest in the cell biology of the extracellular matrix, particularly during development, echoes Mert's pioneering studies. His kind but provocative questioning during meetings is especially missed. The glycosaminoglycan hyaluronan is ubiquitous, and is especially abundant during embryogenesis. Hydrated matrices rich in hyaluronan expand the extracellular space, facilitating cell migration. The viscoelastic properties of hyaluronan are also essential for proper function of cartilage and joints. Recent understanding of hyaluronan biology has benefited from the identification of genes encoding hyaluronan synthases and hyaluronidases, genetic analysis of the roles of hyaluronan during development, elucidation of the biochemical mechanisms of hyaluronan synthesis, and by studies of human genetics and tumors. This review focuses on recent studies utilizing hyaluronan-deficient, gene targeted mice with null alleles for the principal source of hyaluronan during mid-gestation, hyaluronan synthase-2 (has-2). Published in 2003.  相似文献   

10.
Summary Several members of the CD44 family of hyaluronan receptors are expressed on keratinocytes. To identify factors that might be important in regulating CD44 expression, we studied CD44 expression on keratinocytes growing in vitro under a variety of conditions and on cells isolated directly from epidermis. Using Western immunoblots and metabolic labeling, we showed that the pattern of CD44 proteins expressed by keratinocytes was strongly influenced by growth and differentiation. Many protein forms of CD44 are expressed on proliferating keratinocytes in preconfluent cultures, whereas only a few forms are expressed on differentiated cells and in confluent cultures. In preconfluent monolayers, at least four splice variants were identified, including epican, CD44H, CD44E, and a 180-kDa variant. In differentiated cells or in confluent cultures, by contrast, only epican and the 180-kDa protein variant were found. Synthesis of all variants is strongly downregulated when keratinocytes become confluent or when they differentiate. Epican is the predominant form of CD44 on keratinocytes under all conditions and is expressed as a heparan, chondroitin, or keratan sulfate proteoglycan. Preconfluent basal keratinocytes, but not confluent or differentiated keratinocytes, also express chondroitin sulfate proteoglycan forms of CD44E and of the 180-kDa core protein. The modal size of the epican expressed on differentiated keratinocytes is smaller than the size of the epican expressed on basal keratinocytes. Thus, cell confluence and differentiation regulate several aspects of CD44 expression on keratinocytes, suggesting nuances in function for the different protein forms.  相似文献   

11.
Hyaluronan (HA) is an ubiquitous extracellular matrix polymer that plays many roles in health and disease. The ability to view the spatial and temporal expression of HA in tissues and on/in cells has provided researchers with insights into the tremendously diverse biological processes in which HA is involved. Biochemical extraction, quantity, and size measurement of HA can tell part of the story, but these techniques are incomplete in placing HA at the scene of a biological event and determining which other molecules are likely to be cooperating. HA, however, is not immunogenic, so preparing antibodies for histochemistry is problematic. Fortunately, a probe for HA was devised based on the HA binding region of aggrecan, and today this probe is commercially available and very useful for histochemistry. This article discusses the conditions and considerations that the authors’ lab and others have developed for optimal HA staining in many tissues and cell types.  相似文献   

12.
Hyaluronan (HA), a high molecular weight glycosaminoglycan in the extracellular matrix, has been implicated in the promotion of malignant phenotypes, including tumor angiogenesis. However, little is known about the effect of HA on tumor-associated lymphangiogenesis. In this study, mouse hepatocellular carcinoma Hca-F cells combined with or without HA were injected subcutaneously into C3H/Hej mice, then angiogenesis and lymphangiogenesis of implanted tumors were examined by immunostaining for plateletendothelial cell adhesion molecule-1 and lymphatic vascular endothelial hyaluronan receptor-1 respectively. Interestingly, we found HA promotes tumor lymphangiogenesis and the occurrence of intratumoral lymphatic vessels, but has little effect on tumor angiogenesis. Moreover, HA also promotes intralymphatic tumor growth, although it is not sufficient to potentiate lymphatic metastasis. These results suggest that HA, which is elevated in most malignant tumor stroma, may also play a role in tumor progression by promoting lymphangiogenesis.  相似文献   

13.
The influence of hyaluronan (HA) on the expression of human skin fibroblast elastase-type protease (HSFEp) (Homsy et al, 1988) was studied. At confluency of HSF cultures, hyaluronan increased the level of HSFEp in a time and dose-dependent fashion, Optimal effect was observed after 48 h of culture and at 2 mg/ml HA concentration; the stimulatory, effect of HA could be suppressed by 1 μM cycloheximide. The enhancement of enzyme biosynthesis by HA was dependent on cell proliferation but quasi invariant with HSF passage number (from 7-21).  相似文献   

14.
The gene expression plasmid, pET-Lmluc, for the fusion protein of the hyaluronan binding domain from human TSG-6 [product of tumor necrosis factor (TNF)-stimulated gene-6] and luciferase from Renilla reniformis was constructed. The fused gene was expressed in Escherichia coli and the resulted insoluble Lm-luc fusion protein was purified and refolded to recover both the hyaluronan binding capability and the luciferase activity. Hyaluronan as low as 1 ng ml–1 was detected by using the indirect enzymatic immunological assay with the refolded Lm-luc fusion protein.  相似文献   

15.
An enzymatic reaction within a mesh-like structure constructed using hyaluronan was investigated in order to understand the influence of specific reaction environments in a living body on the reaction. This mesh-like structure, which mimicked extracellular matrix conditions, was found to accelerate glycohydrolysis by Jack bean α-mannosidase.  相似文献   

16.
CD44 is a major cell surface receptor for the glycosaminoglycan, hyaluronan (HA). CD44 binds HA specifically, although certain chondroitin-sulfate containing proteoglycans may also be recognized. CD44 binding of HA is regulated by the cells in which it is expressed. Thus, CD44 expression alone does not correlate with HA binding activity. CD44 is subject to a wide array of post-translational carbohydrate modifications, including N-linked, O-linked and glycosaminoglycan side chain additions. These modifications, which differ in different cell types and cell activation states, can have profound effects on HA binding function and are the main mechanism of regulating CD44 function that has been described to date. Some glycosaminoglycan modifications also affect ligand binding specificity, allowing CD44 to interact with proteins of the extracellular matrix, such as fibronectin and collagen, and to sequester heparin binding growth factors. It is not yet established whether the HA binding function of CD44 is responsible for its proposed involvement in inflammation. It has been shown, however, that CD44/HA interactions can mediate leukocyte rolling on endothelial and tissue substrates and that CD44-mediated recognition of HA can contribute to leukocyte activation. Changes in CD44 expression (mainly up-regulation, occasionally down-regulation, and frequently alteration in the pattern of isoforms expressed) are associated with a wide variety of cancers and the degree to which they spread; however, in other cancers, the CD44 pattern remains unchanged. Increased expression of CD44 is associated with increased binding to HA and increased metastatic potential in some experimental tumor systems; however, in other systems increased HA binding and metastatic potential are not correlated. CD44 may contribute to malignancy through changes in the regulation of HA recognition, the recognition of new ligands and/or other new biological functions of CD44 that remain to be discovered. Abbreviations: aa, amino acid(s); CS, chondroitin sulfate; CSPG, chondroitin sulfate containing proteoglycan; CD44H, ‘hematopoietic’, also called ‘standard’, isoform of CD44 which contains none of the alternatively spliced variant exons; CD44-Rg, CD44 receptor globulin, a secreted chimaeric protein composed of the external domain of the adhesion receptor CD44 and the hinge, CH2 and CH3 regions of human immunoglobulin-G heavy chain; ECM, extracellular matrix; GAG, glycosaminoglycan; HA, hyaluronan; HS, heparan sulfate; KS, keratan sulfate; PB, peripheral blood; PBL, peripheral blood lymphocytes This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
The tumor microenvironment makes a decisive contribution to the development and dissemination of cancer, for example, through extracellular matrix components such as hyaluronan (HA), and through chemokines that regulate tumor cell behavior and angiogenesis. Here we report a molecular link between HA, its receptor CD44 and the chemokine CXCL12 in the regulation of cell motility and angiogenesis. High-molecular-weight HA (hHA) was found to augment CXCL12-induced CXCR4 signaling in both HepG2iso cells and primary human umbilical vein endothelial cells, as evidenced by enhanced ERK phosphorylation and increased cell motility. The augmentation of CXCR4 signaling translated into increased vessel sprouting and angiogenesis in a variety of assays. Small HA oligosaccharides (sHA) efficiently inhibited these effects. Both siRNA-mediated reduction of CD44 expression and antibodies that block the interaction of CD44 with HA provided evidence that CXCL12-induced CXCR4 signaling depends on the binding of hHA to CD44. Consistently, CD44 and CXCR4 were found to physically interact in the presence of CXCL12, an interaction that could be inhibited by sHA. These findings provide novel insights into how microenvironmental components interact with cell surface receptors in multi-component complexes to regulate key aspects of tumor growth and progression.  相似文献   

18.
Effect of hyaluronan on MMP expression and activation   总被引:1,自引:0,他引:1  
  相似文献   

19.
Several lines of evidence suggest that in mice the activation of SMAD2/3 signaling by oocyte secreted factors, together with epidermal growth factor receptor (EGFR) activation, is essential to induce cumulus expansion. Here we show that inhibition of EGFR kinase in follicle stimulating hormone (FSH)-stimulated porcine oocyte-cumulus cell complex (OCCs) strongly decreases hyaluronan (HA) synthesis and its retention in the matrix, as well as progesterone synthesis. Although porcine cumulus cells undergo expansion independently of oocytes, we use biochemical and gene expression analyses to show that they do require activation of SMAD2/3 for optimal stimulation of HA synthesis and proteins involved in the organization of this polymer in the expanded matrix. Furthermore, FSH-induced progesterone synthesis by porcine cumulus cells was increased by blocking SMAD2/3 activation. In conclusion, these results support the hypothesis that an FSH-EGF autocrine loop is active in porcine OCCs, and provide the first evidence that the SMAD2/3 signaling pathway is induced by paracrine/autocrine factors in porcine cumulus cells and is involved in the control of both cumulus expansion and steroidogenesis.  相似文献   

20.
The naked mole-rat (NMR) Heterocephalus glaber is a unique and fascinating mammal exhibiting many unusual adaptations to a subterranean lifestyle. The recent discovery of their resistance to cancer and exceptional longevity has opened up new and important avenues of research. Part of this resistance to cancer has been attributed to the fact that NMRs produce a modified form of hyaluronan—a key constituent of the extracellular matrix—that is thought to confer increased elasticity of the skin as an adaptation for living in narrow tunnels. This so-called high molecular mass hyaluronan (HMM-HA) stems from two apparently unique substitutions in the hyaluronan synthase 2 enzyme (HAS2). To test whether other subterranean mammals with similar selection pressures also show molecular adaptation in their HAS2 gene, we sequenced the HAS2 gene for 11 subterranean mammals and closely related species, and combined these with data from 57 other mammals. Comparative screening revealed that one of the two putatively important HAS2 substitutions in the NMR predicted to have a significant effect on hyaluronan synthase function was uniquely shared by all African mole-rats. Interestingly, we also identified multiple other amino acid substitutions in key domains of the HAS2 molecule, although the biological consequences of these for hyaluronan synthesis remain to be determined. Despite these results, we found evidence of strong purifying selection acting on the HAS2 gene across all mammals, and the NMR remains unique in its particular HAS2 sequence. Our results indicate that more work is needed to determine whether the apparent cancer resistance seen in NMR is shared by other members of the African mole-rat clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号