首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A prolific neuronal progenitor cell population in the anterior portion of the neonatal rat forebrain subventricular zone, the SVZa, is specialized for the production of olfactory bulb interneurons. At all ages, SVZa-derived cells traverse a tangential migratory pathway, the rostral migratory stream (RMS), while en route to the olfactory bulb. Unlike other neuronal progenitor cells of the forebrain, migrating progeny of SVZa progenitors express neuronal-specific proteins and continue to divide into adulthood. Recent studies indicate that in the adult, migrating SVZa-derived cells are ensheathed by astrocytes, although the function of these astrocytes has not been determined. To explore the possible role(s) of astrocytes in the rat SVZa and RMS, we examined the expression of astroglial-specific genes in the postnatal SVZa and RMS using RT-PCR, in situ hybridization, and immunohistochemistry during (Postnatal Days 1-10) and after the period of peak olfactory bulb interneuron generation. We also examined the expression of neuronal-specific genes throughout the rostral-caudal extent of the postnatal subventricular zone to determine if differential cell type-specific gene expression could distinguish the neurogenic SVZa as a region distinct from the remainder of the SVZ. We found little to no astrocyte-specific gene expression in the P0-P7 SVZa, although the neuron-specific isoforms of tubulin (T alpha 1 and beta-III tubulin) were expressed abundantly in the SVZa and RMS. In contrast, astrocyte-specific genes were strongly expressed in the SVZ posterior to the SVZa. GFAP expressions begins to appear in some restricted areas of the rostral migratory stream after the first postnatal week. These data suggest that astroglia are not involved in the generation or migration of most olfactory bulb interneurons. Moreover, the scarcity of glial markers in the neonatal SVZa indicates that the forebrain subventricular zone includes a distinct neurogenic anterior region containing predominantly committed neuronal progenitor cells.  相似文献   

3.
Autism is thought to be a neurodevelopmental disorder with symptoms developing during neonatal neurogenesis in the subventricular zone (SVZ). Autism associated genes alter SVZ proliferation and cytoarchitecture, yet the response of the human SVZ in autism is unknown. Epilepsy drives neurogenesis in rodents, but it is unclear how epilepsy interacts with autism in SVZ responses. The striatal and septal SVZ derive from separate lineages in rodents and generate different interneuron types. Yet it is unclear if autism unevenly regulates the striatal and septal SVZ. The human SVZ was immunohistochemically examined post‐mortem from individuals with autism (n = 11) and controls (n = 11). Autism showed a lower cell density in the septal, but not striatal, SVZ hypocellular gap only in the absence of epilepsy. There was a decline in septal hypocellular gap cells with age in autism, but no correlation with age in controls. In contrast, PCNA+ cell numbers increased only in autism with epilepsy both in the hypocellular gap and in the ependymal layer on the septal but not striatal side. Ependymal cells also became GFAP immunoreactive in autism irrespective of epilepsy co‐morbidity; however, this only occurred on the striatal side. In examining these questions we also discovered a subset of ependymal, astrocyte ribbon and RMS cells which express PCNA and Ki67, PLP, and α‐tubulin. These results are the first example of a neuropsychiatric disease differentially affecting the septal and striatal SVZ. Altered cell density in the hypocellular gap and proliferation marker expression suggest individuals with autism may follow a different growth‐trajectory. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 25–41, 2014  相似文献   

4.
Olfactory bulb interneurons are continuously generated in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) into the olfactory bulb (OB) where the majority becomes local GABAergic interneurons. We previously showed that SVZ-derived progenitor cells expressed glutamic acid decarboxylase 65 kDa (GAD65) very early in the migratory pathway. However, only approximately half of OB GABAergic interneurons use GAD65, an equal number express the 67 kDa GAD enzyme. To investigate the differentiation of these GABAergic interneurons we examined their migration in a transgenic mouse expressing green fluorescent protein (GFP) under the control of the GAD67 promoter. In adult, GFP was expressed by a subpopulation of migratory cells in the SVZ and along the RMS. Using Doublecortin (DCX) as a marker of migrating neuroblasts and bromodeoxyuridine (BrdU) incorporation, we show that these GAD67-GFP neurons co-express DCX and incorporate BrdU indicating they are newly born migratory neuroblasts. This is similar to GAD65 transgene expression, and in contrast to dopaminergic interneuron transgene expression which occurs only after cells reach the olfactory bulb. Although the GAD65/67 transgenes are expressed early in migration, there is minimal protein production in the cells prior to reaching the OB. These results suggest that migrating SVZ-derived neuroblasts acquire GABAergic identity prior to reaching their final location in the olfactory bulb.  相似文献   

5.
ObjectivesThe area of the subventricular zone (SVZ) in the adult brain exhibits the highest number of proliferative cells, which, together with the olfactory bulb (OB), maintains constant brain plasticity through the generation, migration and integration of newly born neurons. Despite Tau and its malfunction is increasingly related to deficits of adult hippocampal neurogenesis and brain plasticity under pathological conditions [e.g. in Alzheimer''s disease (AD)], it remains unknown whether Tau plays a role in the neurogenic process of the SVZ and OB system under conditions of chronic stress, a well‐known sculptor of brain and risk factor for AD.Materials and methodsDifferent types of newly born cells in SVZ and OB were analysed in animals that lack Tau gene (Tau‐KO) and their wild‐type littermates (WT) under control or chronic stress conditions.ResultsWe demonstrate that chronic stress reduced the number of proliferating cells and neuroblasts in the SVZ leading to decreased number of newborn neurons in the OB of adult WT, but not Tau‐KO, mice. Interestingly, while stress‐evoked changes were not detected in OB granular cell layer, Tau‐KO exhibited increased number of mature neurons in this layer indicating altered neuronal migration due to Tau loss.ConclusionsOur findings suggest the critical involvement of Tau in the neurogenesis suppression of SVZ and OB neurogenic niche under stressful conditions highlighting the role of Tau protein as an essential regulator of stress‐driven plasticity deficits.  相似文献   

6.
During development radial glia (RG) are neurogenic, provide a substrate for migration, and transform into astrocytes. Cells in the RG lineage are functionally and biochemically heterogeneous in subregions of the brain. In the subventricular zone (SVZ) of the adult, astrocyte-like cells exhibit stem cell properties. During examination of the response of SVZ astrocytes to brain injury in adult mice, we serendipitously found a population of cells in the walls of the ventral lateral ventricle (LV) that were morphologically similar to RG. The cells expressed vimentin, glial fibrillary acidic protein (GFAP), intermediate filament proteins expressed by neural progenitor cells, RG and astrocytes. These RG-like cells had long processes extending ventrally into the nucleus accumbens, ventromedial striatum, ventrolateral septum, and the bed nucleus of the stria terminalis. The RG-like cell processes were associated with a high density of doublecortin-positive cells. Lesioning the cerebral cortex did not change the expression of vimentin and GFAP in RG-like cells, nor did it alter their morphology. To study the ontogeny of these cells, we examined the expression of molecules associated with RG during development: vimentin, astrocyte-specific glutamate transporter (GLAST), and brain lipid-binding protein (BLBP). As expected, vimentin was expressed in RG in the ventral LV embryonically (E16, E19) and during the first postnatal week (P0, P7). At P14, P21, P28 as well as in the adult (8–12 weeks), the ventral portion of the LV retained vimentin immunopositive RG-like cells, whereas RG largely disappeared in the dorsal two-thirds of the LV. GLAST and BLBP were expressed in RG of the ventral LV embryonically and through P7. In contrast to vimentin, at later stages BLBP and GLAST were found in RG-like cell somata but not in their processes. Our results show that cells expressing vimentin and GFAP (in the radial glia-astrocyte lineage) are heterogeneous dorsoventrally in the walls of the LV. The results suggest that not all RG in the ventral LV complete the transformation into astrocytes and that the ventral SVZ may be functionally dissimilar from the rest of the SVZ.  相似文献   

7.
Continual neurogenesis in the subventricular zone (SVZ) of postnatal and adult mammalian forebrain has been well documented, but the mechanisms underlying cell migration and differentiation in this region are poorly understood. We have developed novel in vivo and in vitro methods to investigate these processes. Using stereotaxic injections of a variety of tracers/tracker [Cholera Toxin β subunit (CTb‐), Fluorogold (FG), and Cell Tracker Green (CTG)], we could efficiently label SVZ cells. Over several days, labeled cells migrate along the rostral migratory stream (RMS) to their final differentiation site in the olfactory bulb (OB). The compatibility of these tracers/trackers with immunohistochemistry allows for cell labeling with multiple dyes (e.g., CTb and CTG) and/or specific cell antigens. To investigate the dynamics of migration we labeled SVZ progenitor cells with small injections of CTG and monitored the movements of individual cells in fresh parasagittal brain slices over several hours using time‐lapse confocal microscopy. Our observations suggest that tangential cell migration along the RMS occurs more rapidly than radial cell migration into the OB granule cell layer. To investigate migration over longer time periods, we developed an in vitro organotypic slice in which labeled SVZ progenitors migrate along the RMS and differentiate within the OB. The phenotypic characteristics of these cells in vitro were equivalent to those observed in vivo. Taken together, these methods provide useful tools investigating cell migration and differentiation in a preparation that maintains the anatomical organization of the RMS. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 326–338, 2001  相似文献   

8.
Noggin antagonizes BMP signaling to create a niche for adult neurogenesis   总被引:70,自引:0,他引:70  
Large numbers of new neurons are born continuously in the adult subventricular zone (SVZ). The molecular niche of SVZ stem cells is poorly understood. Here, we show that the bone morphogenetic protein (BMP) antagonist Noggin is expressed by ependymal cells adjacent to the SVZ. SVZ cells were found to express BMPs as well as their cognate receptors. BMPs potently inhibited neurogenesis both in vitro and in vivo. BMP signaling cell-autonomously blocked the production of neurons by SVZ precursors by directing glial differentiation. Purified mouse Noggin protein promoted neurogenesis in vitro and inhibited glial cell differentiation. Ectopic Noggin promoted neuronal differentiation of SVZ cells grafted to the striatum. We thus propose that ependymal Noggin production creates a neurogenic environment in the adjacent SVZ by blocking endogenous BMP signaling.  相似文献   

9.
Continual neurogenesis in the subventricular zone (SVZ) of postnatal and adult mammalian forebrain has been well documented, but the mechanisms underlying cell migration and differentiation in this region are poorly understood. We have developed novel in vivo and in vitro methods to investigate these processes. Using stereotaxic injections of a variety of tracers/tracker [Cholera Toxin beta subunit (CTb-), Fluorogold (FG), and Cell Tracker Green (CTG)], we could efficiently label SVZ cells. Over several days, labeled cells migrate along the rostral migratory stream (RMS) to their final differentiation site in the olfactory bulb (OB). The compatibility of these tracers/trackers with immunohistochemistry allows for cell labeling with multiple dyes (e.g., CTb and CTG) and/or specific cell antigens. To investigate the dynamics of migration we labeled SVZ progenitor cells with small injections of CTG and monitored the movements of individual cells in fresh parasagittal brain slices over several hours using time-lapse confocal microscopy. Our observations suggest that tangential cell migration along the RMS occurs more rapidly than radial cell migration into the OB granule cell layer. To investigate migration over longer time periods, we developed an in vitro organotypic slice in which labeled SVZ progenitors migrate along the RMS and differentiate within the OB. The phenotypic characteristics of these cells in vitro were equivalent to those observed in vivo. Taken together, these methods provide useful tools investigating cell migration and differentiation in a preparation that maintains the anatomical organization of the RMS.  相似文献   

10.
The subventricular zone (SVZ) of the lateral ventricles is the largest neurogenic niche of the postnatal brain. New SVZ-generated neurons migrate via the rostral migratory stream to the olfactory bulb (OB) where they functionally integrate into preexisting neuronal circuits. Nonsynaptic GABA signaling was previously shown to inhibit SVZ-derived neurogenesis. Here we identify the endogenous protein diazepam binding inhibitor (DBI) as a positive modulator of SVZ postnatal neurogenesis by regulating GABA activity in transit-amplifying cells. We performed DBI loss- and gain-of-function experiments in vivo at the peak of postnatal OB neuron generation in mice and demonstrate that DBI enhances proliferation by preventing SVZ progenitors to exit the cell cycle. Furthermore, we provide evidence that DBI exerts its effect on SVZ progenitors via its octadecaneuropeptide proteolytic product (ODN) by inhibiting GABA-induced currents. Together our data reveal a regulatory mechanism by which DBI counteracts the inhibitory effect of nonsynaptic GABA signaling on subventricular neuronal proliferation.  相似文献   

11.
12.
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.  相似文献   

13.
14.
Ionizing radiation commonly used in the radiotherapy of brain tumours can cause adverse side effects to surrounding normal brain tissue. The most significant response of adult brain to radiation damage is induction of apoptosis. The adult mammalian subventricular zone (SVZ) of the brain lateral ventricles (LV) and their subsequent lateral ventricular extension, the rostral migratory stream (RMS), is one of the few areas, which retains the ability to generate new neurons and glial cells throughout life. Taking into account the fact, that ionizing radiation is one of the strongest exogenous factors affecting cell proliferation, the aim of the present study was to investigate the occurrence of radiation-induced apoptosis in this neurogenic region. Adult male Wistar rats were investigated 1, 5 or 10 days after single whole-body gamma irradiation with the dose of 3 Gy. Apoptotic cell death was determined by in situ labelling of DNA nick ends (TUNEL) and fluorescence microscopy evaluation of TUNEL-positive cells. Considerable increase of apoptotic TUNEL-positive cells was observed 24 hrs after irradiation in caudal parts of RMS; i.e. in the vertical arm and elbow of RMS. Initial increase was followed by strong reduction of apoptosis in the RMS and by secondary over-accumulation of apoptotic cells in the animals that survived ten days after exposure. Results showed, that the proliferating population of cells, arisen in SVZ are highly sensitive to radiation-induced apoptosis. This observation should have implications for clinical radiotherapy to avoid complications in therapeutic brain irradiation.  相似文献   

15.
Prolactin-stimulated adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) mediates several reproductive behaviors including mating/pregnancy, dominant male pheromone preference in females, and paternal recognition of offspring. However, downstream signaling mechanisms underlying prolactin-induced adult neurogenesis are completely unknown. We report here for the first time that prolactin activates extracellular signal-regulated kinase 5 (ERK5), a MAP kinase that is specifically expressed in the neurogenic regions of the adult mouse brain. Knockdown of ERK5 by retroviral infection of shRNA attenuates prolactin-stimulated neurogenesis in SVZ-derived adult neural stem/progenitor cells (aNPCs). Inducible erk5 deletion in adult neural stem cells of transgenic mice inhibits neurogenesis in the SVZ and OB following prolactin infusion or mating/pregnancy. These results identify ERK5 as a novel and critical signaling mechanism underlying prolactin-induced adult neurogenesis.  相似文献   

16.
The neurogenic niche of the anterior subventricular zone (SVZ) persistently generates neuroblasts, which migrate along the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into granule and periglomerular cells. Loss of the neural cell adhesion molecule NCAM or its post‐translational modification polysialic acid (polySia) impairs migration causing accumulations of cells in the proximal RMS and decreased OB volume. Polysialylation of NCAM is implemented by two polysialyltransferases, ST8SIA2 and ST8SIA4, with overlapping functions. Here, we used mice with Ncam1 and polysialyltransferase deletions to analyze how partial or complete loss of polySia synthesis or a combined loss of polySia and NCAM affects the RMS and the interneuron composition in the OB. Numerous calretinin (CR)‐positive cells were detected dispersed around the RMS in Ncam1 knockout, St8sia2, St8sia4 double‐knockout, and St8sia2, St8sia4, Ncam1 triple‐knockout mice, as well as in St8sia2 ?/? but not in St8sia4 ?/? mice. These changes were not reflected by reductions of CR‐positive cells in the granule or glomerular layer of the OB. Instead, calbindin‐positive periglomerular interneurons were strongly reduced in all polySia‐NCAM negative mice and slightly attenuated in St8sia2 ?/? as well as in the St8sia4 ?/? mice, which were devoid of ectopic CR‐positive cells along the RMS. Consistent with the early developmental generation of calbindin‐ as compared with CR‐positive OB interneurons, this phenotype was fully developed at postnatal day 5. Together, these results demonstrate that the early development of calbindin‐positive periglomerular interneurons depends on the presentation of polySia on NCAM and requires the activity of both polysialyltransferases. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 421–433, 2016  相似文献   

17.
18.
Neurons and oligodendrocytes are produced in the adult brain subventricular zone (SVZ) from neural stem cells (B cells), which express GFAP and have morphological properties of astrocytes. We report here on the identification B cells expressing the PDGFRalpha in the adult SVZ. Specifically labeled PDGFRalpha expressing B cells in vivo generate neurons and oligodendrocytes. Conditional ablation of PDGFRalpha in a subpopulation of postnatal stem cells showed that this receptor is required for oligodendrogenesis, but not neurogenesis. Infusion of PDGF alone was sufficient to arrest neuroblast production and induce SVZ B cell proliferation contributing to the generation of large hyperplasias with some features of gliomas. The work demonstrates that PDGFRalpha signaling occurs early in the adult stem cell lineage and may help regulate the balance between oligodendrocyte and neuron production. Excessive PDGF activation in the SVZ in stem cells is sufficient to induce hallmarks associated with early stages of tumor formation.  相似文献   

19.
Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ) reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.  相似文献   

20.
Interneurons in the olfactory bulb (OB) are generated from neuronal precursor cells migrating from anterior subventricular zone (SVZa) not only in the developing embryo but also throughout the postnatal life of mammals. In the present study, we established an in vivo electroporation assay to label SVZa cells of rat both at embryonic and postnatal ages, and traced SVZa progenitors and followed their migration pathway and differentiation. We found that labeled cells displayed high motility. Interestingly, the postnatal cells migrated faster than the embryonic cells after applying this assay at different ages of brain development. Furthermore, based on brain slice culture and time-lapse imaging, we analyzed the detail migratory properties of these labeled precursor neurons. Finally, tissue transplantation experiments revealed that cells already migrated in subependymal zone of OB were transplanted back into rostral migratory stream (RMS), and these cells could still migrate out tangentially along RMS to OB. Taken together, these findings provide an in vivo labeling assay to follow and trace migrating cells in the RMS, their maturation and integration into OB neuron network, and unrecognized phenomena that postnatal SVZa progenitor cells with higher motility than embryonic cells, and their migration was affected by extrinsic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号