首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The phosphoinositide 3-kinase (PI3K)/Akt pathway is involved in neuroblastoma development where Akt/PKB activation is associated with poor prognosis. PI3K activity subsequently activates Akt/PKB, and as mutations of PI3K are rare in neuroblastoma and high levels of PI3K subunit p110delta is associated with favorable disease with low p-Akt/PKB, the levels of other PI3K subunits could be important for Akt activation.

Methods

Protein levels of Type IA PI3K catalytic and regulatory subunits were investigated together with levels of phosphorylated Akt/PKB and the PI3K negative regulator PTEN in primary neuroblastoma tumors. Relation between clinical markers and protein levels were evaluated through t-tests.

Results

We found high levels of p-Akt/PKB correlating to aggressive disease and p-Akt/PKB (T308) showed inverse correlation to PTEN levels. The regulatory isomers p55alpha/p50alpha showed higher levels in favorable neuroblastoma as compared with aggressive neuroblastoma. The PI3K-subunit p110alpha was found mainly in advanced tumors while p110delta showed higher levels in favorable neuroblastoma.

Conclusions

Activation of the PI3K/Akt pathway is seen in neuroblastoma tumors, however the contribution of the different PI3K isoforms is unknown. Here we show that p110alpha is preferentially expressed in aggressive neuroblastomas, with high p-Akt/PKB and p110delta is mainly detected in favorable neuroblastomas, with low p-Akt/PKB. This is an important finding as PI3K-specific inhibitors are suggested for enrollment in treatment of neuroblastoma patients.
  相似文献   

2.

Objective

To investigate the effect of parthenolide on apoptosis and autophagy and to study the role of the PI3K/Akt signaling pathway in cervical cancer.

Results

Parthenolide inhibits HeLa cell viability in a dose dependent-manner and was confirmed by MTT assay. Parthenolide (6 µM) induces mitochondrial-mediated apoptosis and autophagy by activation of caspase-3, upregulation of Bax, Beclin-1, ATG5, ATG3 and down-regulation of Bcl-2 and mTOR. Parthenolide also inhibits PI3K and Akt expression through activation of PTEN expression. Moreover, parthenolide induces generation of reactive oxygen species that leads to the loss of mitochondrial membrane potential.

Conclusion

Parthenolide induces apoptosis and autophagy-mediated growth inhibition in HeLa cells by suppressing the PI3K/Akt signaling pathway and mitochondrial membrane depolarization and ROS generation. Parthenolide may be a potential therapeutic agent for the treatment of cervical cancer.
  相似文献   

3.

Background

We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt/RhoA signaling pathway mediates Wnt5a-induced cell migration of osteosarcoma cells. However, the specific receptors responding to Wnt5a ligand remain poorly defined in osteosarcoma metastasis.

Methods

Wound healing assays were used to measure the migration rate of osteosarcoma cells transfected with shRNA or siRNA specific against ROR2 or indicated constructs. We evaluated the RhoA activation in osteosarcoma MG-63 and U2OS cells with RhoA activation assay. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting assays were employed to measure the expression and activation of Akt. Clonogenic assays were used to measure the cell proliferation of ROR2-knockdown or ROR2-overexpressed osteosarcoma cells.

Results

Wnt5a-induced osteosarcoma cell migration was largely abolished by shRNA or siRNA specific against ROR2. Overexpression of RhoA-CA (GFP-RhoA-V14) was able to rescue the Wnt5a-induced cell migration blocked by ROR2 knockdown. The Wnt5a-induced activation of RhoA was mostly blocked by ROR2 knockdown, and elevated by ROR2 overexpression, respectively. Furthermore, we found that Wnt5a-induced cell migration was significantly retarded by RhoA-siRNA transfection or pretreatment of HS-173 (PI3Kα inhibitor), MK-2206 (Akt inhibitor), A-674563 (Akt1 inhibitor), or CCT128930 (Akt2 inhibitor). The activation of Akt was upregulated or downregulated by transfected with ROR2-Flag or ROR2-siRNA, respectively. Lastly, Wnt5a/ROR2 signaling does not alter the cell proliferation of MG-63 osteosarcoma cells.

Conclusions

Taken together, we demonstrate that ROR2 receptor responding to Wnt5a ligand activates PI3K/Akt/RhoA signaling and promotes the migration of osteosarcoma cells.
  相似文献   

4.

Background

MYO18B has been identified as a novel tumor suppressor gene in several cancers. However, its specific roles in the progression of hepatocellular carcinoma (HCC) has not been well defined.

Methods

We firstly identified the expression and prognostic values of MYO18B in HCC using TCGA cohort and our clinical data. Then, MYO18B knockdown by RNA inference was implemented to investigate the effects of MYO18B on HCC cells. Quantitative RT-PCR and Western blot were used to determine gene and protein expression levels. CCK-8 and colony formation assays were performed to examine cell proliferation capacity. Wound healing and transwell assays were used to evaluate the migration and invasion of HepG2 cells.

Results

MYO18B was overexpressed and correlated with poor prognosis in HCC. MYO18B expression was an independent risk factor for overall survival. Knockdown of MYO18B significantly inhibited the proliferation, migration and invasion of HepG2 cells. Meanwhile, MYO18B knockdown could effectively suppress the phosphorylation of PI3K, AKT, mTOR and P70S6K, suggesting that MYO18B might promote HCC progression by targeting PI3K/AKT/mTOR signaling pathway.

Conclusions

MYO18B promoted tumor growth and migration via the activation of PI3K/AKT/mTOR signaling pathway. MYO18B might be a promising target for clinical intervention of HCC.
  相似文献   

5.

Background

The adapter proteins Appl1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif 1) and Appl2 are highly homologous and involved in several signaling pathways. While previous studies have shown that Appl1 plays a pivotal role in adiponectin signaling and insulin secretion, the physiological functions of Appl2 are largely unknown.

Results

In the present study, the role of Appl2 in sepsis shock was investigated by using Appl2 knockout (KO) mice. When challenged with lipopolysaccharides (LPS), Appl2 KO mice exhibited more severe symptoms of endotoxin shock, accompanied by increased production of proinflammatory cytokines. In comparison with the wild-type control, deletion of Appl2 led to higher levels of TNF-α and IL-1β in primary macrophages. In addition, phosphorylation of Akt and its downstream effector NF-κB was significantly enhanced. By co-immunoprecipitation, we found that Appl2 and Appl1 interacted with each other and formed a complex with PI3K regulatory subunit p85α, which is an upstream regulator of Akt. Consistent with these results, deletion of Appl1 in macrophages exhibited characteristics of reduced Akt activation and decreased the production of TNFα and IL-1β when challenged by LPS.

Conclusions

Results of the present study demonstrated that Appl2 is a critical negative regulator of innate immune response via inhibition of PI3K/Akt/NF-κB signaling pathway by forming a complex with Appl1 and PI3K.
  相似文献   

6.
7.

Background

Apoptosis and autophagy are known to play important roles in cancer development. It has been reported that HVJ-E induces apoptosis in cancer cells, thereby inhibiting the development of tumors. To define the mechanism by which HVJ-E induces cell death, we examined whether HVJ-E activates autophagic and apoptotic signaling pathways in HeLa cells.

Methods

Cells were treated with chloroquine (CQ) and rapamycin to determine whether autophagy is involved in HVJ-E-induced apoptosis. Treatment with the ERK inhibitor, U0126, was used to determine whether autophagy and apoptosis are mediated by the ERK pathway. Activators of the PI3K/Akt/mTOR/p70S6K pathway, 740 Y-P and SC79, were used to characterize its role in HVJ-E-induced autophagy. siRNA against Atg3 was used to knock down the protein and determine whether it plays a role in HVJ-E-induced apoptosis in HeLa cells.

Results

We found that HVJ-E infection inhibited cell viability and induced apoptosis through the mitochondrial pathway, as evidenced by the expression of caspase proteins. This process was promoted by rapamycin treatment and inhibited by CQ treatment. HVJ-E-induced autophagy was further blocked by 740 Y-P, SC79, and U0126, indicating that both the ERK- and the PI3K/Akt/mTOR/p70S6K-pathways were involved. Finally, autophagy-mediated apoptosis induced by HVJ-E was inhibited by siRNA-mediated Atg3 knockdown.

Conclusion

In HeLa cells, HVJ-E infection triggered autophagy through the PI3K/Akt/mTOR/p70S6K pathway in an ERK1/2-dependent manner, and the induction of autophagy promoted apoptosis in an Atg3-dependent manner.
  相似文献   

8.

Objective

To investigate the role of lncRNA ZEB1-AS1 in B-lineage acute lymphoblastic leukemia (B-ALL).

Results

ZEB1-AS1 levels were aberrantly up-regulated in B-ALL. All correlated with STAT3 activation and IL-11 production. Moreover, a high level of ZEB1-AS1 predicted poor prognosis of B-ALL patients. Mechanistically, ZEB1-AS1 could bind to IL-11 and promote IL-11 stability. Down-regulation of ZEB1-AS1 decreased IL-11 production of human bone marrow stromal cells (BMSCs), which led to suppressed proliferation and inhibited IL-11/STAT3 pathway in BALL-1 cells.

Conclusions

ZEB1-AS1 promotes the activation of IL-11/STAT3 signaling pathway by associating with IL-11 in B-ALL.
  相似文献   

9.

Background

Growth factor receptor-bound protein 14 (Grb14) is an adapter protein implicated in receptor tyrosine kinase signaling. Grb14 knockout studies highlight both the positive and negative roles of Grb14 in receptor tyrosine kinase signaling, in a tissue specific manner. Retinal cells are post-mitotic tissue, and insulin receptor (IR) activation is essential for retinal neuron survival. Retinal cells express protein tyrosine phosphatase-1B (PTP1B), which dephosphorylates IR and Grb14, a pseudosubstrate inhibitor of IR. This project asks the following major question: in retinal neurons, how does the IR overcome inactivation by PTP1B and Grb14?

Results

Our previous studies suggest that ablation of Grb14 results in decreased IR activation, due to increased PTP1B activity. Our research propounds that phosphorylation in the BPS region of Grb14 inhibits PTP1B activity, thereby promoting IR activation. We propose a model in which phosphorylation of the BPS region of Grb14 is the key element in promoting IR activation, and failure to undergo phosphorylation on Grb14 leads to both PTP1B and Grb14 exerting their negative roles in IR. Consistent with this hypothesis, we found decreased phosphorylation of Grb14 in diabetic type 1 Ins2Akita mouse retinas. Decreased retinal IR activation has previously been reported in this mouse line.

Conclusions

Our results suggest that phosphorylation status of the BPS region of Grb14 determines the positive or negative role it will play in IR signaling.
  相似文献   

10.
11.
12.

Background

3-Nitro-4-hydroxy phenyl arsenic acid, roxarsone, is widely used as an organic arsenic feed additive for livestock and poultry, which may increase the level of arsenic in the environment and the risk of exposure to arsenic in human. Little information is focused on the angiogenesis roxarsone-induced and its mechanism at present. This paper aims to study the role of PI3K/Akt signaling in roxarsone-induced angiogenesis in rat vascular endothelial cells and a mouse B16–F10 melanoma xenograft model.

Results

The results showed that treatment with 0.1–10.0 µmol/L roxarsone resulted in an increase in the OD rate in the MTT assay, the number of BrdU-positive cells in the proliferation assay, the migration distance in the scratch test and the number of meshes in tube formation assay. Further, treatment with 1.0 µmol/L roxarsone was associated with significantly higher phosphorylation of PI3K/Akt and expression of VEGF than the control treatment. The PI3K inhibitor was found to significantly combat the effects of 1.0 µmol/L roxarsone. Furthermore, roxarsone treatment was observed to increase the weight and volume of B16–F10 xenografts and VEGF expression and PI3K/Akt phosphorylation in a dose-dependent manner, with the 25 mg/kg dose having significant effects.

Conclusions

These results demonstrate that roxarsone has the ability to promote growth and tube formation in vascular endothelial cells and the growth of mouse B16–F10 xenografts. Further, the findings also indicate that PI3K/Akt signaling plays a regulatory role in roxarsone-induced angiogenesis in vivo and in vitro.
  相似文献   

13.

Background

Knockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However, the mechanisms are not completely understood.

Methods

Western blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib.

Results

Knockdown of Akt1 stimulated β-catenin nuclear accumulation, resulting in breast cancer cell invasion. β-catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve via dephosphorylating of PIKfyve at Ser318 site, resulting in a decreased degradation of EGFR signaling pathway. Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and β-catenin in breast cancer cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis, while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by Akt1 inhibition.

Conclusion

EGFR-mediated β-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer metastasis.
  相似文献   

14.

Background

C-type lectin receptors (CLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) have the ability to recognize Aspergillus fumigatus (A. fumigates) and induce innate immune response. Dectin-1 is a well-described CLR, while interleukin-1 receptor-associated kinase 1 (Irak1) and receptor-interacting protein 2 (Rip2) are pivotal adaptor proteins of TLRs and NLRs signaling pathways, respectively.

Objectives

Our primary aim is to elucidate whether Dectin-1 regulates the expression of Irak1 and Rip2, and confirm that CLRs, TLRs, and NLRs pathways act synergistically in response to A. fumigatus infection.

Methods

Pulmonary infection mouse models were established. Myeloid cells were differentiated in cell culture and examined by inverted microscopy, flow cytometry, and scanning electron microscopy. The relative mRNA levels were determined by qRT-PCR. The protein expression levels were determined by immunohistochemistry and Western blot.

Results

The expression of Dectin-1, Irak1, Rip2, and phosphorylation level of nuclear factor (NF)-κB p65 were induced by conidia in immunocompetent mice, while their expression and phosphorylation level were inhibited in immunocompromised mice after the administration of conidia. Conidia increased the expression of Dectin-1, Irak1, and Rip2 in myeloid cells, while Dectin-1 silencing significantly reduced their expression.

Conclusion

Our findings demonstrate that Dectin-1, Irak1, and Rip2 are involved in response to A. fumigatus infection. Dectin-1 modulates the expression of Irak1 and Rip2. Additionally, these three signaling pathways are interconnected, and CLRs pathway plays a dominant role against A. fumigatus invasion.
  相似文献   

15.

Background

INPP4B and PTEN dual specificity phosphatases are frequently lost during progression of prostate cancer to metastatic disease. We and others have previously shown that loss of INPP4B expression correlates with poor prognosis in multiple malignancies and with metastatic spread in prostate cancer.

Results

We demonstrate that de novo expression of INPP4B in highly invasive human prostate carcinoma PC-3 cells suppresses their invasion both in vitro and in vivo. Using global gene expression analysis, we found that INPP4B regulates a number of genes associated with cell adhesion, the extracellular matrix, and the cytoskeleton. Importantly, de novo expressed INPP4B suppressed the proinflammatory chemokine IL-8 and induced PAK6. These genes were regulated in a reciprocal manner following downregulation of INPP4B in the independently derived INPP4B-positive LNCaP prostate cancer cell line. Inhibition of PI3K/Akt pathway, which is highly active in both PC-3 and LNCaP cells, did not reproduce INPP4B mediated suppression of IL-8 mRNA expression in either cell type. In contrast, inhibition of PKC signaling phenocopied INPP4B-mediated inhibitory effect on IL-8 in either prostate cancer cell line. In PC-3 cells, INPP4B overexpression caused a decline in the level of metastases associated BIRC5 protein, phosphorylation of PKC, and expression of the common PKC and IL-8 downstream target, COX-2. Reciprocally, COX-2 expression was increased in LNCaP cells following depletion of endogenous INPP4B.

Conclusion

Taken together, we discovered that INPP4B is a novel suppressor of oncogenic PKC signaling, further emphasizing the role of INPP4B in maintaining normal physiology of the prostate epithelium and suppressing metastatic potential of prostate tumors.
  相似文献   

16.

Background

Increased activity or expression of integrin-linked kinase (ILK), which regulates cell adhesion, migration, and proliferation, leads to oncogenesis. We identified the molecular basis for the regulation of ILK and its alternative role in conferring ERK1/2/NF-κB-mediated growth advantages to gastric cancer cells.

Results

Inhibiting ILK with short hairpin RNA or T315, a putative ILK inhibitor, abolished NF-κB-mediated the growth in the human gastric cancer cells AGS, SNU-1, MKN45, and GES-1. ILK stimulated Ras activity to activate the c-Raf/MEK1/2/ERK1/2/ribosomal S6 kinase/inhibitor of κBα/NF-κB signaling by facilitating the formation of the IQ motif-containing GTPase-activating protein 1 (IQGAP1)-Ras complex. Forced enzymatic ILK expression promoted cell growth by facilitating ERK1/2/NF-κB signaling. PI3K activation or decreased PTEN expression prolonged ERK1/2 activation by protecting ILK from proteasome-mediated degradation. C-terminus of heat shock cognate 70 interacting protein, an HSP90-associated E3 ubiquitin ligase, mediated ILK ubiquitination to control PI3K- and HSP90-regulated ILK stabilization and signaling. In addition to cell growth, the identified pathway promoted cell migration and reduced the sensitivity of gastric cancer cells to the anticancer agents 5-fluorouracil and cisplatin. Additionally, exogenous administration of EGF as well as overexpression of EGFR triggered ILK- and IQGAP1-regulated ERK1/2/NF-κB activation, cell growth, and migration.

Conclusion

An increase in ILK non-canonically promotes ERK1/2/NF-κB activation and leads to the growth of gastric cancer cells.
  相似文献   

17.

Background

Impaired wound healing frequently occurs in diabetes mellitus (DM) and is implicated in impaired angiogenesis. Long non-coding RNA (lncRNA) H19 has been reported as being reduced in DM and played a critical role in inducing angiogenesis. Thus, we hypothesized that H19 may affect impaired wound healing in streptozotocin (STZ)-induced diabetic mice transfused with autologous blood preserved in standard preservative fluid or modified preservative fluid.

Methods

Fibroblasts in injured skin were isolated and cultured in vitro. After location of H19 in fibroblasts using fluorescence in situ hybridization (FISH), RNA-pull down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), Co immunoprecipitation (COIP) and dual luciferase reporter gene assay were used to verify the binding of H19 to HIF-1α.

Results

The modified preservative fluid preserved autologous blood increased the H19 expression in fibroblasts, and maintained better oxygen-carrying and oxygen release capacities as well as coagulation function. Furthermore, H19 promoted HIF-1α histone H3K4me3 methylation and increased HIF-1α expression by recruiting EZH2. H19 promoted fibroblast activation by activating HIF-1α signaling pathway in fibroblasts and enhanced wound healing in diabetic mice.

Conclusions

Taken together, H19 accelerated fibroblast activation by recruiting EZH2-mediated histone methylation and modulating the HIF-1α signaling pathway, whereby augmenting the process of modified preservative fluid preserved autologous blood enhancing the postoperative wound healing in diabetic mice.
  相似文献   

18.

Background

Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown.

Results

Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly.

Conclusion

Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号