首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three mosquito coil formulations, each containing either metofluthrin 0.025% w/w, d-allethrin 0.225% w/w, or esbiothrin 0.10% w/w were evaluated for knockdown and killing properties against laboratory populations of female Aedes aegypti (L.) and Culex quinquefasciatus Say under different nutritional-energy sources of blood, sucrose, and water. The tests were conducted in a 70 cm × 70 cm × 70 cm glass chamber. Mosquito responses were measured by knockdown times during the 20-min exposure period and mortality at 24 h post-exposure. The results showed the metofluthrin coil provided the most rapid knockdown for both test species and regardless of nutritional condition compared with the other two coils. Metofluthrin and d-allethrin were highly effective in killing Ae. aegypti (95–100% mortality), whereas esbiothrin produced 100% mortality to water-fed mosquitoes and 78.3 and 80% mortality for blood- and sucrose-fed specimens, respectively. >85% mortality was observed in sucrose- and water-fed Cx. quinquefasciatus against metofluthrin, while 78.3% blood-fed females survived exposure. This species showed very low mortality with d-allethrin (3.3% to 28.3%), with the highest mortality recorded (71.7%) for water-fed with esbiothrin. Overall, Ae. aegypti was more sensitive to all three coil products than Cx. quinquefasciatus. The mortality between species and nutritional conditions showed significant differences for all comparisons except for sucrose-fed mosquitoes exposed to metofluthrin.  相似文献   

2.
3.
The biochemical pathway of egg chorion tanning in the mosquito, Aedes aegypti, is described and compared with chorion protein crosslinking in Drosophila and silkmoths and the biochemical pathways of cuticular tanning in insects. Phenol oxidase, dopa decarboxylase and tyrosine are critical components involved in egg chorion tanning in A. aegypti. Tanning of the mosquito egg chorion is initiated following activation of phenol oxidase, which then catalyzes the hydroxylation of tyrosine to dopa and further oxidizes dopa and dopamine to their respective o-quinones. Because intramolecular cyclization is much slower in dopaminequinone than dopaquinone, the chance to react with external nucleophiles to participate in protein crosslinking reactions also is much greater in dopaminequinone than dopaquinone. This might partly explain the necessity for the involvement of dopa decarboxylase in mosquito chorion tanning. Intramolecular cyclization of dopaquinone and dopaminequinone to form dopachrome and dopaminechrome, respectively, the structural rearrangement of these aminochromes to produce 5,6-dihydroxyindole, and the subsequent oxidation of 5,6-dihydroxyindole by phenol oxidase also lead to melanin formation during egg chorion tanning.  相似文献   

4.
5.
Abdominal distention accelerates the release of a factor from the head of blood-fed Aedes aegypti mosquitoes. The critical period during which the head is required for oögenesis following blood ingestion is approx 6 h with a 5 μl meal, but small blood meals of 1 μl require the head to be present for significantly longer. Increasing the abdominal distention by supplementing the 1 μl meal with saline results in a critical period similar to that with 5 μl of blood. The information from the distended abdomen appears to travel via the ventral nerve cord. Transection of the ventral nerve cord prevents oögenesis from occurring after small blood meals, but not with larger blood volumes. Topical application of 100 pg of juvenile hormone III can substitute for the distention message.  相似文献   

6.
We investigated the effect of fifteen 1,5-disubstituted imidazoles (1,5-dis) on juvenile hormone III (JH III) and methyl farnesoate (MF) biosynthesis by the corpora allata (CA) of the mosquito Aedes aegypti in vitro. Four compounds (TH-35, TH-83, TH-62 and TH-28) significantly decreased JH biosynthesis in the CA dissected from 3-day old sugar-fed females. The decrease of JH synthesis was not always associated with increased MF. TH-30 and TH-83 increased MF levels, while TH-85 and TH-61 significantly decreased MF levels. Five compounds (TH-26, TH-60, TH-83, TH-35 and TH-30) significantly inhibited JH biosynthesis in the CA dissected from females 15 h after a blood meal. Four 1,5-dis (TH-30, TH-26, TH-28 and TH-66) caused MF increases in CA from blood-fed females. 1,5-Disubstituted imidazoles had higher inhibitory activity on JH synthesis when substituted at position 5 by a 3-benzyloxyphenyl group and at position 1 by a benzyl group (such as TH-35). Inhibition of JH and MF biosynthesis by TH-35 was age-dependent and influenced by nutritional status; inhibition differed when evaluated in the CA dissected from sugar-fed females at different days after emergence and in the CA dissected from females at different hours after a blood meal. Inhibition was always higher when the CA was more active. The addition of TH-35 significantly reduced the stimulatory effect of Aedes-allatotropin and farnesoic acid on JH synthesis. This is the first report of an inhibitory effect of 1,5-disubstituted imidazoles on JH synthesis in Diptera.  相似文献   

7.
Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long‐range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human‐aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.  相似文献   

8.
9.
10.
Genomic analysis of detoxification genes in the mosquito Aedes aegypti   总被引:5,自引:0,他引:5  
Annotation of the recently determined genome sequence of the major dengue vector, Aedes aegypti, reveals an abundance of detoxification genes. Here, we report the presence of 235 members of the cytochrome P450, glutathione transferase and carboxy/cholinesterase families in Ae. aegypti. This gene count represents an increase of 58% and 36% compared with the fruitfly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. The expansion is not uniform within the gene families. Secure orthologs can be found across the insect species for enzymes that have presumed or proven biosynthetic or housekeeping roles. In contrast, subsets of these gene families that are associated with general xenobiotic detoxification, in particular the CYP6, CYP9 and alpha esterase families, have expanded in Ae. aegypti. In order to identify detoxification genes associated with resistance to insecticides we constructed an array containing unique oligonucleotide probes for these genes and compared their expression level in insecticide resistant and susceptible strains. Several candidate genes were identified with the majority belonging to two gene families, the CYP9 P450s and the Epsilon GSTs. This 'Ae. aegypti Detox Chip' will facilitate the implementation of insecticide resistance management strategies for arboviral control programmes.  相似文献   

11.
Studies on prophenoloxidase activation in the mosquito Aedes aegypti L   总被引:5,自引:0,他引:5  
This study, the first of its kind in a mosquito vector species, demonstrates the feasibility of studying prophenoloxidase activation in an insect containing not more than a few microliters of hemolymph. Mosquito phenoloxidase was found to be in an inactive proenzyme form, prophenoloxidase. Mosquito prophenoloxidase required bivalent cation for its activation; Ca2+ was found to be the most efficient for activation. Concomitant amidase activity was also observed prior to phenoloxidase activity. Through Western blotting, using a cross-reactive silkworm antiprophenoloxidase antibody, our results strongly suggest that mosquito prophenoloxidase activation resulted from limited proteolysis. Protease inhibitor studies reinforced this contention showing the involvement of (a) serine protease(s) with trypsin-like activity in the activation of mosquito prophenoloxidase.  相似文献   

12.
FLP-mediated recombination in the vector mosquito, Aedes aegypti.   总被引:3,自引:2,他引:3       下载免费PDF全文
The activity of a yeast recombinase, FLP, on specific target DNA sequences, FRT, has been demonstrated in embryos of the vector mosquito, Aedes aegypti. In a series of experiments, plasmids containing the FLP recombinase under control of a heterologous heat-shock gene promoter were co-injected with target plasmids containing FRT sites into preblastoderm stage mosquito embryos. FLP-mediated recombination was detected between (i) tandem repeats of FRT sites leading to the excision of specific DNA sequences and (ii) FRT sites located on separate plasmids resulting in the formation of heterodimeric or higher order multimeric plasmids. In addition to FRT sites originally isolated from the yeast 2 microns plasmid, a number of synthetic FRT sites were also used. The synthetic sites were fully functional as target sites for recombination and gave results similar to those derived from the yeast 2 microns plasmid. This successful demonstration of yeast FLP recombinase activity in the mosquito embryo suggests a possible future application of this system in establishing transformed lines of mosquitoes for use in vector control strategies and basic studies.  相似文献   

13.
14.
Pre-oviposition behaviour, the attraction of mosquitoes to oviposition-site stimuli, is induced by a haemolymph-borne substance. A large proportion of gravid mosquitoes was attracted to a solution of methyl propionate in a laboratory olfactometer, but non-gravid females were also attracted if they were first injected with haemolymph from gravid females. Ovariectomized blood-fed mosquitoes failed to respond, but the reimplantation of denervated ovaries or as few as six mature follicles still triggered pre-oviposition after a blood meal.  相似文献   

15.
The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.  相似文献   

16.
A cDNA clone originating from adult female Aedes aegypti mosquitoes was found with substantial similarity to nucleosidases of the EC 3.2.2.1 enzyme class. Although this type of enzyme is unusual in animals, abundant enzyme activity was found in salivary homogenates of this mosquito, but not in salivary homogenates of the mosquitoes Anopheles gambiae and Culex quinquefasciatus, or the sand fly Lutzomyia longipalpis. Aedes salivary homogenate hydrolyses inosine and guanosine to hypoxanthine and xanthine plus the ribose moiety, but does not hydrolyse the pyrimidines uridine and cytidine, thus characterizing the presence of a purine nucleosidase activity. The enzyme is present in oil-induced saliva, indicating that it is secreted. Male Ae. aegypti salivary gland homogenates (SGH) have very low purine nucleosidase activity, suggesting that the enzyme plays a role in mosquito blood feeding. A novel isocratic HPLC method to separate nucleosides and their bases is described.  相似文献   

17.
Injected β-ecdysone was found to induce the synthesis of yolk protein (vitellogenin) in adult female Aedes aegypti without a blood meal. After injection of 5 μg ecdysone per mosquito, vitellogenin constituted 80 per cent of the total protein secreted by explanted fat body, a proportion comparable to that produced by fat body from blood-fed females. Moreover, the time course of induction of vitellogenin synthesis in ecdysone-injected mosquitoes was similar to that triggered by a blood meal. Response to ecdysone is dosedependent: 0·5 μg per female was required to stimulate synthesis to 50 per cent of the level found 18 hr after a blood meal. Ecdysone was effective in decapitated or ovariectomized mosquitoes, and also when applied directly to fat body preparations in vitro. Thus it appears that ecdysone acts directly on the fat body to induce specific protein synthesis, as does the vitellogenin stimulating hormone (VSH) from the ovary of blood-fed mosquitoes. These results suggest that ecdysone can replace VSH in inducing vitellogenin synthesis in the unfed mosquito.  相似文献   

18.
To prevent spreading of deadly diseases, populations of mosquitoes can be controlled by interfering with their chemical communication system. Odorant-binding proteins, recently shown to be required for olfaction, represent interesting targets for such purpose. Here we describe the ligand-binding properties and the unusual tissue expression of odorant-binding protein 22 from the repertoire of Aedes aegypti. Best ligands are molecules with two aromatic rings connected by a short rigid chain. The protein is expressed not only in sensory organs, such as the antennae and proboscis, but also in the male reproductive apparatus and transferred to the spermathecs of females. This suggests an additional function for this protein as pheromone carrier, analogously to vertebrates’ urinary and salivary proteins as well as some insect chemosensory proteins. Antiserum against odorant-binding protein 22 also stained the edges and sensilla of spiracles, indicating a third, still unknown, role for this protein.  相似文献   

19.
Excess protein ingested by blood meals of mosquitoes is catabolized by a uricotelic pathway. We have established enzyme activity profiles for xanthine dehydrogenase (XDH), the enzyme that catalyzes uric acid synthesis, and related it to intestinal proteolytic activities in female Aedes aegypti mosquitoes.During the first day after eclosion the meconium containing urate and urea of larval/pupal origin is discharged, together with XDH activity. Females of constant body size and of defined age were given measured blood meals by enema. XDH activity and uric acid synthesis correlate with the size of the blood meals. Upon completion of protein digestion and catabolism, XDH is excreted in an active form and its activity returns to the residual level. Maximal XDH activity always precedes intestinal proteolytic activities by a few hours. Regulation of XDH activity appears to be purely metabolic, independent of endocrine factors.Small females fed identical volumes of blood produce fewer eggs than their larger sisters and consequently catabolize a higher proportion of blood protein to uric acid.Old females are less fecund and show smaller investments of protein into yolk than younger ones. Despite reduced XDH activities, they excrete equal amounts of urate as young females. Obviously in young females XDH activity is in excess of biochemical requirements.  相似文献   

20.
Mosquitoes were infected by intrathoracic inoculation. About 95% head squashes were positive for dengue virus antigen on the 15th post infection day (PID). Esterase activity was determined in the homogenates prepared from the salivary glands and midguts on different PIDs of dengue virus inoculated and control mosquitoes showed that it was consistently higher in the virus-infected batches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号