首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma serotonin levels and the platelet serotonin transporter   总被引:1,自引:0,他引:1  
Serotonin (5HT) is a platelet-stored vasoconstrictor. Altered concentrations of circulating 5HT are implicated in several pathologic conditions, including hypertension. The actions of 5HT are mediated by different types of receptors and terminated by a single 5HT transporter (SERT). Therefore, SERT is a major mechanism that regulates plasma 5HT levels to prevent vasoconstriction and thereby secure a stable blood flow. In this study, the response of platelet SERT to the plasma 5HT levels was examined within two models: (i) in subjects with chronic hypertension or normotension; (ii) on platelets isolated from normotensive subjects and pretreated with 5HT at various concentrations. The platelet 5HT uptake rates were lower during hypertension due to a decrease in Vmax with a similar Km; also, the decrease in Vmax was primarily due to a decrease in the density of SERT on the platelet membrane, with no change in whole cell expression. Additionally, while the platelet 5HT content decreased 33%, the plasma 5HT content increased 33%. Furthermore, exogenous 5HT altered the 5HT uptake rates by changing the density of SERT molecules on the plasma membrane in a biphasic manner. Therefore, we hypothesize that in a hypertensive state, the elevated plasma 5HT levels induces a loss in 5HT uptake function in platelets via a decrease in the density of SERT molecules on the plasma membrane. Through the feedback effect of this proposed mechanism, plasma 5HT controls its own concentration levels by modulating the uptake properties of platelet SERT.  相似文献   

2.
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.  相似文献   

3.
Clearance rates for serotonin (5-HT) in heterozygote (+/-) and homozygote (-/-) serotonin transporter (5-HTT) knockout (KO) mice have not been determined in vivo. Moreover, the effect of selective serotonin reuptake inhibitors (SSRIs) on 5-HT clearance in these mice has not been examined. In this study, the rate of clearance of exogenously applied 5-HT was measured in the CA3 region of the hippocampus of anesthetized mice using high-speed chronoamperometry. Compared with wild-type mice, the maximal rate of 5-HT clearance from extracellular fluid (ECF) was decreased in heterozygotes and more markedly so in KO mice. Heterozygote mice were more sensitive to the 5-HT uptake inhibitor, fluvoxamine, resulting in longer clearance times for 5-HT than in wild-type mice; as expected, the KO mice were completely unresponsive to fluvoxamine. There were no associated changes in norepinephrine transporter density, nor was there an effect of the norepinephrine uptake inhibitor, desipramine, on 5-HT clearance in any genotype. Thus, adaptive changes in the norepinephrine transport system do not occur in the CA3 region of hippocampus as a consequence of 5-HTT KO. These data highlight the potential of the heterozygote 5-HTT mutant mice to model the dynamic in vivo consequences of the human 5-HTT polymorphism.  相似文献   

4.
《Cell host & microbe》2021,29(10):1545-1557.e4
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   

5.
Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self‐administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self‐administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self‐administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol .  相似文献   

6.
7.
Serotonin increases the frequency and amplitude of spontaneous contractions and leads to an increase in the basal tonus of the locust oviducts. These effects were dose-dependent and were seen on both the non-innnervated and innervated portion of the oviducts. Vertebrate type serotonin agonists and antagonists were used and the profile shows that the receptors on the non-innervated and innervated portion of the oviducts are more similar to 5-HT3 receptors than to either 5-HT1 or 5-HT2 receptors. No serotonin was found associated with the oviducts or the innervation to the oviducts using immunohistochemistry and HPLC coupled to electrochemical detection, suggesting a neurohormonal role for serotonin in the control of locust oviducts.  相似文献   

8.
In contrast to the abundance of information on the many physiological and developmental actions of serotonin in molluscan nervous systems, comparatively little is known about the serotonin receptors involved in these responses. Embryos of the pulmonate gastropod, Helisoma trivolvis, display a cilia-driven rotational behavior that is regulated by endogenous serotonin. In the present study, two functional assays were used to determine some of the pharmacological properties of the receptors that mediate the cilio-excitatory action of serotonin. Timelaspe video microscopy was used to measure whole embryo rotation rat and cilia beat frequency in isolated cells. In dose-response experiments, serotonin was approximately 10 times more potent in stimulating cilia beat frequency over embryo rotation. In rotation experiments, 5-carboxyamidotryptamine and methysergide had effective agonist activity in dose ranges similar to that of serotonin (1 to 100 μM). In contrast, 8-hydroxydiproylaminotetralin HBr (8-OH-DPAT) displayed agonist activity of lower potency and effectiveness. Several compounds displayed antagonist activity in the 1 to 100 μM dose range, including mianserin, spiperone, ritanserin, 1-(1-naphthyl) piperazine, and Propranolol. α-Methylserotonin had mixed agonist–antagonist activity, and metoclopramide, MDL-72222, and ketanserin were inactive. Experiments on isolated cells suggested that the extremely effective antagonism displayed by mianserin in the embryo rotation assay was due to its specific activity at ciliary serotonin receptors. These results implicate the presence of a novel serotonin receptor on embryonic ciliated cells that is pharmacologically distinct from those previously characterized in vertebrate or invertebrate systems. 1994 John Wiley & Sons, Inc.  相似文献   

9.
Serotonin, a well-known neurotransmitter in mammals, has been linked to a number of neurological and gastrointestinal disorders. One of these disorders, serotonin syndrome, is a potentially deadly condition caused by increased levels of serotonin in the extracellular space. Information on the neurochemical effects of serotonin syndrome on serotonin catabolism is lacking, particularly in relation to the enteric system of the gastrointestinal tract. Here the catabolism of serotonin is monitored in rats with pharmacologically induced serotonin syndrome, with the catabolites characterized using a specialized capillary electrophoresis system with laser-induced native fluorescence detection. Animals induced with serotonin syndrome demonstrate striking increases in the levels of serotonin and its metabolites. In the brain, levels of serotonin increased 2- to 3-fold in animals induced with serotonin syndrome. A major serotonin metabolite, 5-hydroxyindole acetic acid, increased 10- to 100-fold in experimental animals. Similar results were observed in the gastrointestinal tissues; in the small intestines, serotonin levels increased 4- to 5-fold. Concentrations of 5-hydroxyindole acetic acid increased 32- to 100-fold in the intestinal tissues of experimental animals. Serotonin sulfate showed surprisingly large increases, marking what may be the first time the compound has been reported in rat intestinal tissues.  相似文献   

10.
Restraint-induced stress in rats was found to enhance steady state concentrations of whole brain and hypothalamic serotonin, at 1,2 and 4 h after immobilization. The increase was maximal at 1 h and tended to decline thereafter. The rate of accumulation of rat brain serotonin, in pargyline pretreated animals, was significantly enhanced after restraint stress. Bilateral adrenalectomy and metyrapone, an endogenous corticoid synthesis inhibitor, failed to affect restraint stress (1h)-induced increase in rat brain serotonin levels. Thus restraint stress-induced autoanalgesia and potentiation of the pharmacological actions of several centrally acting drugs, in rats, are serotonin-mediated responses. The results also indicate that restraint stress-induced effects on rat brain serotonin are not dependent on endogenous corticoid activity.  相似文献   

11.
Serotonin (5-hydroxytryptamine, 5-HT) is a ubiquitous modulatory neurotransmitter with roles as a neurohormone and neurotransmitter. However, few studies have been performed characterizing this molecule and its related metabolites in circulating fluids. Here, we demonstrate native 5-HT sulfate, but much lower levels of 5-HT, in hemolymph of the marine mollusk Pleurobranchaea californica. The metabolite 5-HT sulfate forms from 5-HT uptake and metabolism in central ganglia of Aplysia californica and in the visceral nerve and eye of Pleurobranchaea, but not in hemolymph itself. In addition, 5-hydroxyindole acetic acid (5-HIAA), while not detected in hemolymph, forms in higher quantities than does 5-HT sulfate in the eye and visceral nerve, and gamma-glu-5-HT is also observed in this area but never in hemolymph. As systemic 5-HT sulfate appears not to originate from the optic region or from systemic 5-HT, 5-HT sulfate likely derives from the nervous system. Circulating 5-HT sulfate is at least 10-fold higher during the light portion of a 12 : 12-h light/dark cycle than during the dark portion (p < 0.0007), but there is no obvious trend for free systemic tryptophan (Trp) (p > 0.3) in Pleurobranchaea. 5-HT in mollusks is associated with general arousal state; thus, diurnal systemic changes in a 5-HT catabolite may reflect a regulatory role for indole catabolism in behavioral rhythms.  相似文献   

12.
【目的】昆虫血清素(5-羟色胺)受体已知有5个亚型。本文旨在系统分析昆虫5-羟色胺受体亚型蛋白的结构和进化关系。【方法】首先对文献报道已明确亚型7种昆虫的5-羟色胺受体(23个亚型序列)进行生物信息学分析,然后采用多序列比对和进化树构建的方法对NCBI数据库中推测可能为昆虫5-羟色胺受体蛋白序列进行分析。【结果】发现47个推测是昆虫5-羟色胺受体的蛋白序列中,有40个蛋白序列属于昆虫5-羟色胺受体,其余7个未能确认的昆虫5-羟色胺受体的蛋白序列都具有7个跨膜区域,属于G蛋白偶联受体家族,但不一定为5-羟色胺受体。【结论】本文对昆虫5-羟色胺受体蛋白的系统进化树分析,间接地证明了本文确认的昆虫5-羟色胺受体亚型注释信息的准确性,发现分类上同属一个目的昆虫5-HT受体序列的亲缘性较近。本研究为昆虫5-羟色胺受体的结构和功能分析提供基础。  相似文献   

13.
Obesity and hypertension are increasing medical problems in adolescents. Serotonin transporter (5-HTT) is involved in mood and eating disturbances. Encoded by the gene SLC6A4, the promoter shows functional insertion/deletion alleles: long (L) and short (S). Because individuals who are carriers for the short version are known to be at risk for higher levels of anxiety, we hypothesized that this variant may be associated with overweight. Data and blood samples were collected from 172 adolescents out of a cross-sectional, population-based study of 934 high school students. To replicate the findings, we also included 119 outpatients from the Nutrition and Diabetes Section of the Children's County Hospital. We found that the S allele was associated with overweight (BMI > 85th percentile), being a risk factor for overweight independently of sex, age, and hypertension [odds ratio (OR): 1.85; 95% confidence interval (CI): 1.13, 3.05; p < 0.02]. Additionally, in the outpatient study, compared with the homozygous LL subjects, S allele carriers showed a higher BMI z-score (1.47 +/- 1.09 vs. 0.51 +/- 1.4; p < 0.002) and were more frequent in overweight children. In conclusion, the S allele of the SLC6A4 promoter variant is associated with overweight being an independent genetic risk factor for obesity.  相似文献   

14.
Methylazoxymethanol (MAM)-induced cerebral hypoplasia resulted in a significant increase in densities of both serotonin uptake sites in frontal cortex and dopamine uptake sites in striatum, suggesting serotonergic and dopaminergic axon terminals were compressed in the smaller brain volumes. The density of S2 serotonin receptors in MAM-lesioned frontal cortex was decreased probably due to down-regulation, while densities of D1 and D2 dopamine receptors in striatum were identical between MAM-lesioned rats and control rats.  相似文献   

15.
Manipulative parasites often alter the phenotype of their hosts along multiple dimensions. ‘Multidimensionality’ in host manipulation could consist in the simultaneous alteration of several physiological pathways independently of one another, or proceed from the disruption of some key physiological parameter, followed by a cascade of effects. We compared multidimensionality in ‘host manipulation’ between two closely related amphipods, Gammarus fossarum and Gammarus pulex, naturally and experimentally infected with Pomphorhynchus laevis (Acanthocephala), respectively. To that end, we calculated in each host–parasite association the effect size of the difference between infected and uninfected individuals for six different traits (activity, phototaxis, geotaxis, attraction to conspecifics, refuge use and metabolic rate). The effects sizes were highly correlated between host–parasite associations, providing evidence for a relatively constant ‘infection syndrome’. Using the same methodology, we compared the extent of phenotypic alterations induced by an experimental injection of serotonin (5-HT) in uninfected G. pulex to that induced by experimental or natural infection with P. laevis. We observed a significant correlation between effect sizes across the six traits, indicating that injection with 5-HT can faithfully mimic the ‘infection syndrome’. This is, to our knowledge, the first experimental evidence that multidimensionality in host manipulation can proceed, at least partly, from the disruption of some major physiological mechanism.  相似文献   

16.
肠道微生物在肠道稳态和大脑健康中发挥着举足轻重的作用.血清素是大脑的一种重要的单胺类神经递质,90%以上在结肠肠嗜铬细胞中由色氨酸代谢转化而来,在机体发挥广泛作用.近年来的研究表明,血清素对机体发挥的作用可能受到肠道微生物影响.肠道中某些微生物具有产生血清素的能力,同时,微生物群及其代谢产物(如丁酸)能通过影响色氨酸羟...  相似文献   

17.
The mechanism of action of commonly used antidepressants remains an issue of debate. In the experiments reported here we studied the effects of three representative compounds, the selective serotonin reuptake inhibitor fluoxetine, the selective serotonin reuptake enhancer tianeptine and the selective norepinephrine reuptake inhibitor desipramine on the structure of central serotonin pathways after a 4-week administration. We found that the serotonin modulators fluoxetine and tianeptine, but not desipramine, increase the density of 5-HT and serotonin transporter (SERT)-immunoreactive axons in the neocortical layer IV and certain forebrain limbic areas, such as piriform cortex and the shell region of nucleus accumbens. These changes were noted in the absence of a significant effect of serotonin antidepressants on the expression of tryptophan hydroxylase (TPH-2), i.e. the rate-limiting enzyme for 5-HT biosynthesis and of SERT at the mRNA level. In addition, we found that anterogradely filled terminal axons from injections of biotinylated dextran amine into the dorsal raphe showed significantly more branching in animals treated with fluoxetine compared with animals treated with liposyn vehicle. Our findings suggest that antidepressants may exert very selective structural effects on their cognate monoamine systems in normal animals and raise the possibility that neurotrophic mechanisms may play a role in their clinical efficacy.  相似文献   

18.
p-Methoxyamphetamine (PMA) has been implicated in fatalities as a result of 'ecstasy' (MDMA) overdose worldwide. Like MDMA, acute effects are associated with marked changes in serotonergic neurotransmission, but the long-term effects of PMA are poorly understood. The aim of this study was to determine the effect of repeated PMA administration on in vitro measures of neurodegeneration: serotonin (5-HT) uptake, 5-HT transporter (SERT) density and 5-HT content in the hippocampus, and compare with effects on in vivo 5-HT clearance. Male rats received PMA, MDMA (4 or 15 mg/kg s.c., twice daily) or vehicle for 4 days and 2 weeks later indices of SERT function were measured. [(3)H]5-HT uptake into synaptosomes and [(3)H]cyanoimipramine binding to the SERT were significantly reduced by both PMA and MDMA treatments. 5-HT content was reduced in MDMA-, but not PMA-treatment. In contrast, clearance of locally applied 5-HT measured in vivo by chronoamperometry was only reduced in rats treated with 15 mg/kg PMA. The finding that 5-HT clearance in vivo was unaltered by MDMA treatment suggests that in vitro measures of 5-HT axonal degeneration do not necessarily predict potential compensatory mechanisms that maintain SERT function under basal conditions.  相似文献   

19.
Re-uptake of the neurotransmitters serotonin and noradrenaline out of the synaptic cleft is mediated by selective transporter proteins, the serotonin transporter and the noradrenaline transporter respectively. Both are integral membrane proteins that are have a high degree of homology and represent members of a larger neurotransmitter transporter superfamily. Several studies have indicated that the serotonin transporter has an an oligomeric structure. To determine whether monoamine transporters can also function in oligomeric structures in situ, we constructed a concatenate consisting of one molecule of serotonin transporter covalently linked to one molecule of noradrenaline transporter. Heterologous expression of this hybrid construct allowed us to analyse the function, i.e. transport activity, and the structure, i.e. the molecular weight of the total construct and of its single components, at the same time. We showed that serotonin-noradrenaline transporter fusion proteins are fully active and exhibit the pharmacological profile of both their individual components. These findings support the hypothesis that monoamine transporters are expressed and may function as oligomeric proteins composed of non-interacting monomers.  相似文献   

20.
The serotonin (5-HT) hypothesis of depression dates from the 1960s. It originally postulated that a deficit in brain serotonin, corrected by antidepressant drugs, was the origin of the illness. Nowadays, it is generally accepted that recurring mood disorders are brain diseases resulting from the combination, to various degrees, of genetic and other biological as well as environmental factors, evolving through the lifespan. All areas of neuroscience, from genes to behaviour, molecules to mind, and experimental to clinical, are actively engaged in attempts at elucidating the pathophysiology of depression and the mechanisms underlying the efficacy of antidepressant treatments. This first of two special issues of Philosophical Transactions B seeks to provide an overview of current developments in the field, with an emphasis on cellular and molecular mechanisms, and how their unravelling opens new perspectives for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号