首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: Copper mining has led to Cu pollution in agricultural soils. In this report, the effects of Cu pollution on bacterial communities of agricultural soils from Valparaiso region, central Chile, were studied. Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA genes was used for the characterization of bacterial communities from Cu-polluted and non-polluted soils. Cu-resistant bacterial strains were isolated from Cu-polluted soils and characterized. RESULTS: DGGE showed a similar high number of bands and banding pattern of the bacterial communities from Cu-polluted and non-polluted soils. The presence of copA genes encoding the multi-copper oxidase that confers Cu-resistance in bacteria was detected by PCR in metagenomic DNA from the three Cu-polluted soils, but not in the non-polluted soil. The number of Cu-tolerant heterotrophic cultivable bacteria was significantly higher in Cu-polluted soils than in the non-polluted soil. Ninety two Cu-resistant bacterial strains were isolated from three Cu-polluted agricultural soils. Five isolated strains showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM) and also resistance to other heavy metals. 16S rRNA gene sequence analyses indicate that these isolates belong to the genera Sphingomonas, Stenotrophomonas and Arthrobacter. The Sphingomonas sp. strains O12, A32 and A55 and Stenotrophomonas sp. C21 possess plasmids containing the Cu-resistance copA genes. Arthrobacter sp. O4 possesses the copA gene, but plasmids were not detected in this strain. The amino acid sequences of CopA from Sphingomonas isolates (O12, A32 and A55), Stenotrophomonas strain (C21) and Arthrobacter strain (O4) are closely related to CopA from Sphingomonas, Stenotrophomonas and Arthrobacter strains, respectively. CONCLUSIONS: This study suggests that bacterial communities of agricultural soils from central Chile exposed to long-term Cu-pollution have been adapted by acquiring Cu genetic determinants. Five bacterial isolates showed high copper resistance and additional resistance to other heavy metals. Detection of copA gene in plasmids of four Cu-resistant isolates indicates that mobile genetic elements are involved in the spreading of Cu genetic determinants in polluted environments.  相似文献   

2.
AIMS: To study the effect that copper residues exert on bacterial communities and the ability of bacteria to colonize different microhabitats in abandoned tailing dumps. METHODS AND RESULTS: We used the terminal-restriction fragment length polymorphism technique, a culture-independent molecular approach based on PCR amplification of ribosomal genes, to compare the structure of the bacterial communities from samples taken at two nearby located abandoned tailing dumps found in the Mediterranean-climate area of central Chile. Our results show that elevated available copper content in tailings has a strong effect on the bacterial community composition, but that other factors like pH and organic matter content also play an important role in the structure of these communities. We also found that the number of abundant bacteria in these samples was significantly lower than in soils not exposed to metal pollution. CONCLUSIONS: In addition to bioavailable copper, bacterial communities found in copper-tailings dumps are also affected by several other environmental factors. SIGNIFICANCE AND IMPACT OF THE STUDY: This first report on environmental factors influencing microbial communities in copper-tailings dumps will help to devise appropriate restoration procedures in this type of polluted habitat.  相似文献   

3.
A denaturing gradient gel electrophoresis (DGGE) method was developed to assess the diversity of dsrB (dissimilatory sulfite reductase beta-subunit)-genes in sulfate-reducing communities. For this purpose a PCR primer pair was optimized for the amplification of a approximately 350 bp dsrB gene fragment that after DGGE gel electrophoresis enabled us to discriminate between dsrB genes of different SRB-subgroups,-genera and -species. The dsrB-DGGE method revealed considerable genetic diversity when applied to DNA extracts obtained from aquifer samples that were derived from monitoring wells of an in situ metal precipitation (ISMP) pilot project conducted at the site of a non-ferrous industry or from environmental heavy metal contaminated samples. The sequences of the excised and sequenced DGGE bands represented dsrB genes of different SRB-subgroups,-genera and -species, thus confirming the broad applicability of the PCR primer pair. Linking the results of the physico-chemical follow-up of the field and lab experiments to the dsrB-DGGE data will provide a better understanding of the contribution of the SRB populations to the ongoing ISMP processes.  相似文献   

4.
SP‐Designer is an open‐source program providing a user‐friendly tool for the design of specific PCR primer pairs from a DNA sequence alignment containing sequences from various taxa. SP‐Designer selects PCR primer pairs for the amplification of DNA from a target species on the basis of several criteria: (i) primer specificity, as assessed by interspecific sequence polymorphism in the annealing regions, (ii) the biochemical characteristics of the primers and (iii) the intended PCR conditions. SP‐Designer generates tables, detailing the primer pair and PCR characteristics, and a FASTA file locating the primer sequences in the original sequence alignment. SP‐Designer is Windows‐compatible and freely available from http://www2.sophia.inra.fr/urih/sophia_mart/sp_designer/info_sp_designer.php .  相似文献   

5.
Chitin is an abundant biopolymer whose degradation is mediated primarily by bacterial chitinases. We developed a degenerate PCR primer set to amplify a approximately 900-bp fragment of family 18, group I chitinase genes and used it to retrieve these gene fragments from environmental samples. Clone libraries of presumptive chitinase genes were created for nine water and six sediment samples from 10 aquatic environments including freshwater and saline lakes, estuarine water and sediments, and the central Arctic Ocean. Putative chitinase sequences were also retrieved from the Sargasso Sea metagenome sequence database. We were unable to obtain PCR product with these primers from an alkaline, hypersaline lake (Mono Lake, California). In total, 108 partial chitinase gene sequences were analyzed, with a minimum of 5 and a maximum of 13 chitinase sequences obtained from each library. All chitinase sequences were novel compared to previously identified sequences. Intralibrary sequence diversity was low, while we found significant differences between libraries from different water column samples and between water column and sediment samples. However, identical sequences were retrieved from samples collected at widely distributed locations that did not necessarily represent similar environments, suggesting homogeneity of chitinoclastic communities between some environments.  相似文献   

6.
Chitin is an abundant biopolymer whose degradation is mediated primarily by bacterial chitinases. We developed a degenerate PCR primer set to amplify a ~900-bp fragment of family 18, group I chitinase genes and used it to retrieve these gene fragments from environmental samples. Clone libraries of presumptive chitinase genes were created for nine water and six sediment samples from 10 aquatic environments including freshwater and saline lakes, estuarine water and sediments, and the central Arctic Ocean. Putative chitinase sequences were also retrieved from the Sargasso Sea metagenome sequence database. We were unable to obtain PCR product with these primers from an alkaline, hypersaline lake (Mono Lake, California). In total, 108 partial chitinase gene sequences were analyzed, with a minimum of 5 and a maximum of 13 chitinase sequences obtained from each library. All chitinase sequences were novel compared to previously identified sequences. Intralibrary sequence diversity was low, while we found significant differences between libraries from different water column samples and between water column and sediment samples. However, identical sequences were retrieved from samples collected at widely distributed locations that did not necessarily represent similar environments, suggesting homogeneity of chitinoclastic communities between some environments.  相似文献   

7.
Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PCR approach was employed to obtain DNA sequences encoding P(IB)-type ATPases, which are proteins that transport toxic or essential soft metals such as Zn(II), Cd(II), and Pb(II) through the cell wall. Phylogenetic incongruencies between a 16S rRNA gene tree and a tree based on 48 P(IB)-type ATPase amplicons and sequences available for complete bacterial genomes revealed an ancient transfer from a member of the beta subclass of the Proteobacteria (beta-proteobacterium) that may have predated the diversification of the genus PSEUDOMONAS: Four additional phylogenetic incongruencies indicate that LGT has occurred among groups of beta- and gamma-proteobacteria. Two of these transfers appeared to be recent, as indicated by an unusual G+C content of the P(IB)-type ATPase amplicons. This finding provides evidence that LGT plays a distinct role in the evolution of metal homeostasis in deep subsurface bacteria, and it shows that molecular evolutionary approaches may be used for investigation of this process in microbial communities in specific environments.  相似文献   

8.
A new Eucarya-specific 18S rDNA primer set was constructed and tested using denaturing gradient gel electrophoresis to analyze the genetic diversity of eukaryotic microorganisms in aquatic environments. All eukaryal lines of descent exhibited four or fewer nucleotide mismatches in the forward primer sequence, except for the Microspora line of descent. The reverse primer annealed to a more conserved region with fewer than two nucleotide mismatches. Genomic DNA from test organisms with different numbers of nucleotide mismatches were amplified to test primer specificity. Relatively low annealing temperatures allowed the amplification of sequences with up to four nucleotide mismatches while still maintaining specificity for the eukaryal domain. Denaturing gradient gel electrophoresis was used to separate similarly sized PCR products of environmental samples, and the obtained banding patterns were converted to a binary format for statistical comparisons. Cluster analysis of these patterns showed similar results to a cluster analysis based on environmental variables. This approach provides an analytical tool to study the population structure and molecular ecology of eukaryotic microbial communities inhabiting aquatic environments.  相似文献   

9.
Aims: To study streptomycin‐resistant bacteria isolated from Jiaozhou Bay and their molecular determinants of resistance. Methods and Results: Twenty‐seven tetracycline‐resistant and 49 chloramphenicol‐resistant bacterial isolates from surface seawater of Jiaozhou Bay were selected for investigation. More than 88% of these isolates were resistant to streptomycin. Half of the streptomycin‐resistant bacteria harboured the strA–strB gene pair, and six isolates carried Tn5393‐like transposons by PCR detection. The p9123‐related plasmids containing the sul2–strA–strB gene cluster were characterized in two environmental Escherichia coli isolates. Transposon Tn5393 was first identified on a Klebsiella pneumoniae plasmid, which also carried Tn1721, estP and umu genes responsible for antimicrobial and insecticide resistance. Conclusions: Coresistance to streptomycin and tetracycline or chloramphenicol was found with high frequency. p9123‐related plasmid and Tn5393 transposon may contribute to the wide distribution and spread of the strA–strB gene pair in Jiaozhou Bay. The detection of streptomycin‐resistance plasmid pQ1‐1 from Jiaozhou Bay seawater bacteria and human bacterial pathogens from USA indicates its global dissemination and transmission, across different components of the microbiota on earth. Significance and Impact of the Study: Streptomycin resistance can be recognized as an important bioindicator of environmental quality, owing to its association with anthropogenic pollution and the multidrug‐resistant microbiota.  相似文献   

10.
PCR-generated artefact from 16S rRNA gene-specific primers   总被引:2,自引:0,他引:2  
Artefacts consisting of concatenated oligonucleotide primer sequences were generated during sub-optimally performing polymerase chain reaction amplification of bacterial 16S rRNA genes using a commonly employed primer pair. These artefacts were observed during amplification for terminal restriction fragment length polymorphism analyses of complex microbial communities, and after amplification from DNA from a microbial culture. Similar repetitive motifs were found in gene sequences deposited in GenBank. The artefact can be avoided by using different primers for the amplification reaction.  相似文献   

11.
A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and sequenced nasA genes. Our results indicate that several groups of heterotrophic bacterial nasA genes are common and widely distributed in oceanic environments.  相似文献   

12.
P1B‐ATPases are among the most common resistance factors to metal‐induced stress. Belonging to the superfamily of P‐type ATPases, they are capable of exporting transition metal ions at the expense of adenosine triphosphate (ATP) hydrolysis. P1B‐ATPases share a conserved structure of three cytoplasmic domains linked by a transmembrane domain. In addition, they possess a unique class of domains located at the N‐terminus. In bacteria, these domains are primarily associated with metal binding and either occur individually or as serial copies of each other. Within this study, the roles of the two adjacent metal‐binding domains (MBDs) of CopA, the copper export ATPase of Escherichia coli were investigated. From biochemical and physiological data, we deciphered the protein‐internal pathway of copper and demonstrate the distal N‐terminal MBD to possess a function analogous to the metallochaperones of related prokaryotic copper resistance systems, that is its involvement in the copper transfer to the membrane‐integral ion‐binding sites of CopA. In contrast, the proximal domain MBD2 has a regulatory role by suppressing the catalytic activity of CopA in absence of copper. Furthermore, we propose a general functional divergence of tandem MBDs in P1B‐ATPases, which is governed by the length of the inter‐domain linker.  相似文献   

13.
The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Cura?ao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth. Furthermore, distinct differences in bacterial communities were found with increasing water depth. Comparisons of TRFLP peaks with sequenced clone libraries indicate the black band disease cyanobacterium clone CD1C11 is common and most abundant on healthy corals in less than 10 m water depth. Similarly, sequences belonging to a previously unrecognized group of likely phototrophic bacteria, herein referred to as CAB-I, were also more common in shallow water. To assess the influence of environmental and physiologic factors on bacterial community structure, canonical correspondence analysis was performed using explanatory variables associated with: (i) light availability; (ii) seawater pollution; (iii) coral mucus composition; (iv) the community structure of symbiotic algae; and (v) the photosynthetic activity of symbiotic algae. Eleven per cent of the variation in bacterial communities was accounted for by covariation with these variables; the most important being photosynthetically active radiation (sunlight) and the coral uptake of sewage-derived compounds as recorded by the delta(15)N of coral tissue.  相似文献   

14.
In the attempt to explore complex bacterial communities of environmental samples, primers hybridizing to phylogenetically highly conserved regions of 16S rRNA genes are widely used, but differential amplification is a recognized problem. The biases associated with preferential amplification of multitemplate PCR were investigated using 'universal' bacteria-specific primers, focusing on the effect of primer mismatch, annealing temperature and PCR cycle number. The distortion of the template-to-product ratio was measured using predefined template mixtures and environmental samples by terminal restriction fragment length polymorphism analysis. When a 1 : 1 genomic DNA template mixture of two strains was used, primer mismatches inherent in the 63F primer presented a serious bias, showing preferential amplification of the template containing the perfectly matching sequence. The extent of the preferential amplification showed an almost exponential relation with increasing annealing temperature from 47 to 61 degrees C. No negative effect of the various annealing temperatures was observed with the 27F primer, with no mismatches with the target sequences. The number of PCR cycles had little influence on the template-to-product ratios. As a result of additional tests on environmental samples, the use of a low annealing temperature is recommended in order to significantly reduce preferential amplification while maintaining the specificity of PCR.  相似文献   

15.
Dissemination of multidrug-resistant bacteria, particularly in hospitals, has become a serious public health problem. Integrons impart antibiotic multidrug resistance in gram-negative and some gram-positive bacteria by capturing and then disseminating antibiotic resistance genes. This mechanism plays a major role in contributing to the alarmingly high prevalence of bacterial drug resistance. A universal polymerase chain reaction (PCR) primer set was attempted to design to more sensitively and specifically detect integrons in environmental samples. One set, designated intCiF3a, intCiF3b, intCiiiR3a, and intCiiiR3b, simultaneously amplifies the conserved region of the tyrosine recombinase gene family between box I and box II. This primer set generates PCR products derived from classes 1, 2, and 3 integron integrases from environmental samples such as wastewater. An unexpected finding of this study was the detection of new putative integron integrase gene sequences. This is the subject of ongoing research, which aims to provide a clear understanding of the risk to human health posed by these genetic elements.  相似文献   

16.
To overcome the shortcomings of universal 16S rRNA gene primers 8F and 907R when studying the diversity of complex microbial communities, the 3' termini of both primers were replaced with inosine. A comparison of the clone libraries derived using both primer sets showed seven bacterial phyla amplified by the altered primer set (8F-I/907R-I) whereas the original set amplified sequences belonging almost exclusively to Proteobacteria (95.8%). Sequences belonging to Firmicutes (42.6%) and Thermotogae (9.3%) were more abundant in a library obtained by using 8F-I/907R-I at a PCR annealing temperature of 54 degrees C, while Proteobacteria sequences were more frequent (62.7%) in a library obtained at 50 degrees C, somewhat resembling the result obtained using the original primer set. The increased diversity revealed by using primers 8F-I/907R-I confirms the usefulness of primers with inosine at the 3' termini in studying the microbial diversity of environmental samples.  相似文献   

17.
The composition of free-living nitrogen-fixing microbial communities in rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings was studied by the presence of nifH genes using Polymerase Chain Reaction-Denatured Gradient Gel Electrophoresis (PCR-DGGE) approach. Eleven rhizosphere tailing samples and nine non-rhizosphere tailing samples from six plant communities were collected from two wastelands with different discarded periods. The nested PCR method was used to amplify the nifH genes from environmental DNA extracted from tailing samples. Twenty-two of 37 nifH gene sequences retrieved from DGGE gels clustered in Proteobacteria (α-Proteobacteria and β-Proteobacteria) and 15 nifH gene sequences in Cyanobacteria. Most nifH gene fragments sequenced were closely related to uncultured bacteria and cyanobacteria and exhibited less than 90% nucleotide acid identity with bacteria in the database, suggesting that the nifH gene fragments detected in copper mine tailings may represent novel sequences of nitrogen-fixers. Our results indicated that the non-rhizosphere tailings generally presented higher diversity of nitrogen-fixers than rhizosphere tailings and the diversity of free-living nitrogen-fixers in tailing samples was mainly affected by the physico-chemical properties of the wastelands and plant species, especially the changes of nutrient and heavy metal contents caused by the colonization of plant community.  相似文献   

18.
We studied the effect of ectomycorrhizal fungi on bacterial communities colonizing roots of Douglas fir (Pseudotsuga menziesii). Mycorrhizal tips were cleaned of soil and separated based on gross morphological characteristics. Sequencing of the internal transcribed spacers of the nuclear rRNA gene cluster indicated that the majority of the tips were colonized by fungi in the Russulaceae, with the genera Russula and Lactarius comprising 70% of the tips. Because coamplification of organellar 16S rRNA genes can interfere with bacterial community analysis of root tips, we developed and tested a new primer pair that permits amplification of bacterial 16S rRNA genes but discriminates more effectively against organellar sequences than commonly used bacterial primer sets. We then used terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of the 16S rRNA gene to examine differences in bacterial communities associated with the mycorrhizal tips. Cluster analysis of T-RFLP profiles indicated that there were different bacterial communities among the root tips; however, the communities did not seem to be affected by the taxonomic identity of the ectomycorrhizal fungi. Terminal restriction fragment profiling and sequencing of cloned partial 16S rRNA genes indicated that most bacteria on the ectomycorrhizal tips were related to the Alphaproteobacteria and the Bacteroidetes group.  相似文献   

19.
A specific PCR system based on the gene encoding the RNA polymerase beta subunit, rpoB, was developed for amplification and denaturing gradient gel electrophoresis (DGGE) fingerprinting of Paenibacillus communities in environmental samples. This gene has been previously proven to be a powerful identification tool for the discrimination of species within the genus Paenibacillus and could avoid the limitations of 16S rRNA-based phylogenetic analysis. Initially, the PCR system based on universal rpoB primers were used to amplify DNAs of different Paenibacillus species. A new reverse primer (rpoBPAEN) was further designed based on an insertion of six nucleotides in the Paenibacillus sequences analyzed. This semi-nested PCR system was evaluated for specificity using DNAs isolated from 27 Paenibacillus species belonging to different 16S rRNA-based phylogenetic groups and seven non-Paenibacillus species. The non-Paenibacillus species were not amplified using this PCR approach and one group of Paenibacillus species consisting of strains without the six-base insert also were not amplified; these latter strains were found to be distinct based on 16S rRNA gene phylogeny. In addition, a clone library was generated from the rpoB fragments amplified from two Brazilian soil types (Cerrado and Forest) and all 62 clones sequenced were closely related to one of the 22 sequences from Paenibacillus previously obtained in this study. To assess the diversity of Paenibacillus species in Cerrado and Forest soils and in the rhizosphere of different cultivars of maize, a PCR-DGGE system was used. The Paenibacillus DGGE fingerprints showed a clear distinction between communities of Paenibacillus in Forest and Cerrado soils and rhizosphere samples clustered along Cerrado soil. Profiles of cultivars CMS22 and CMS36 clustered together, with only 53% of similarity to CMS11 and CMS04. The results presented here demonstrate the potential use of the rpoB-based Paenibacillus-specific PCR-DGGE method for studying the diversity of Paenibacillus populations in natural environments.  相似文献   

20.
Menkes disease is an X‐linked, recessive disorder of copper metabolism that occurs in approximately 1 in 200,000 live births. The condition is characterized by skeletal abnormalities, severe mental retardation, neurologic degeneration, and patient mortality in early childhood. The symptoms of Menkes disease result from a deficiency of serum copper and copper‐dependent enzymes. A candidate gene for the disease has been isolated and designated MNK. The MNK gene codes for a P‐type cation transporting ATPase, based on homology to known P‐type ATPases and in vitro experimentation. cDNA clones of MNK in Menkes patients show diminished or absented hybridization in northern blot experiments. The Menkes protein functions to export excess intracellular copper and activates upon Cu(I) binding to the six metal‐binding repeats in the amino‐terminal domain. The loss of Menkes protein activity blocks the export of dietary copper from the gastrointestinal tract and causes the copper deficiency associated with Menkes disease. Each of the Menkes protein amino‐terminal repeats contains a conserved ‐X‐Met‐X‐Cys‐X‐X‐Cys‐ motif (where X is any amino acid). These metal‐binding repeats are conserved in other cation exporting ATPases involved in metal metabolism and in proteins involved in cellular defense against heavy metals in both prokaryotes and eukaryotes. An overview of copper metabolism in humans and a discussion of our understanding of the molecular basis of cellular copper homeostasis is presented. This forms the basis for a discussion of Menkes disease and the protein deficit in this disease. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 93–106, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号