首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of 32 pyrimido- and 5 tetrahydropyrazino[2,1-f]purinediones was obtained and evaluated for their adenosine receptors (ARs) affinities. The 1,3-dibutyl derivative of 9-(4-(2-(dimethylamino)ethoxy)phenyl)-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione was found to be the most potent A1 AR antagonist of the present series, showing selectivity over the other AR subtypes. The structure–activity for the obtained purinediones was established. Docking experiments of the investigated library to homology models of the human and rat A1 and A2A ARs allowed to compare the expected binding modes for selected compounds. The detailed analysis of binding cavities within individual AR subtypes indicated small but significant structural variations that may underlie the observed differences in binding affinities of purinediones at particular subtypes and species.  相似文献   

2.
Multitarget approaches, i.e., addressing two or more targets simultaneously with a therapeutic agent, are hypothesized to offer additive therapeutic benefit for the treatment of neurodegenerative diseases. Validated targets for the treatment of Parkinson’s disease are, among others, the A2A adenosine receptor (AR) and the enzyme monoamine oxidase B (MAO-B). Additional blockade of brain A1 ARs may also be beneficial. We recently described 8-benzyl-substituted tetrahydropyrazino[2,1-f]purinediones as a new lead structure for the development of such multi-target drugs. We have now designed a new series of tetrahydropyrazino[2,1-f]purinediones to extensively explore their structure–activity-relationships. Several compounds blocked human and rat A1 and A2AARs at similar concentrations representing dual A1/A2A antagonists with high selectivity versus the other AR subtypes. Among the best dual A1/A2AAR antagonists were 8-(3-(4-chlorophenyl)propyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (41, Ki human A1: 65.5 nM, A2A: 230 nM; Ki rat A1: 352 nM, A2A: 316 nM) and 1,3-dimethyl-8-((2-(thiophen-2-yl)thiazol-4-yl)methyl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (57, Ki human A1: 642 nM, A2A: 203 nM; Ki rat A1: 166 nM, A2A: 121 nM). Compound 57 was found to be well water-soluble (0.7 mg/mL) at a physiological pH value of 7.4. One of the new compounds showed triple-target inhibition: (R)-1,3-dimethyl-8-(2,1,3,4-tetrahydronaphthalen-1-yl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (49) was about equipotent at A1 and A2AARs and at MAO-B (Ki human A1: 393 nM, human A2A: 595 nM, IC50 human MAO-B: 210 nM) thus allowing future in vivo explorations of the intended multi-target approach.  相似文献   

3.
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC50 human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC50 MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.  相似文献   

4.
Syntheses and biological activities of imidazo-, pyrimido- and diazepino[2,1-f]purinediones containing N-alkyl substituents (with straight, branched or unsaturated chains) are described. Tricyclic derivatives were synthesized by the cyclization of 8-bromo-substituted 7-(2-bromoethyl)-, 7-(3-chloropropyl)- or 7-(4-bromobutyl)-theophylline with primary amines under various conditions. Compound 22 with an ethenyl substituent was synthesized by dehydrohalogenation of 9-(2-bromoethyl)-1,3-dimethyltetrahydropyrimido[2,1-f]purinedione. The obtained derivatives (5–35) were initially evaluated for their affinity at rat A1 and A2A adenosine receptors (AR), showing moderate affinity for both adenosine receptor subtypes. The best ligands were diazepinopurinedione 28 (Ki = 0.28 μM) with fivefold A2A selectivity and the non-selective A1/A2A AR ligand pyrimidopurinedione 35 (Ki A1 = 0.28 μM and Ki A2A = 0.30 μM). The compounds were also evaluated for their affinity at human A1, A2A, A2B and A3 ARs. All of the obtained compounds were docked to the A2A AR X-ray structure in complex with the xanthine-based, potent adenosine receptor antagonist—XAC. The likely interactions of imidazo-, pyrimido- and diazepino[2,1-f]purinediones with the residues forming the A2A binding pocket were discussed. Furthermore, the new compounds were tested in vivo as anticonvulsants in maximal electroshock, subcutaneous pentylenetetrazole (ScMet) and TOX tests in mice (i.p.). Pyrimidopurinediones showed anticonvulsant activity mainly in the ScMet test. The best derivative was compound 11, showing 100 % protection at a dose of 100 mg/kg without symptoms of neurotoxicity. Compounds 6, 7, 8 and 14 with short substituents showed neurotoxicity and caused death. In rat tests (p.o.), 9 was characterized by a high protection index (>13.3). AR affinity did not apparently correlate with the antiepileptic potency of the compounds.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-013-9358-3) contains supplementary material, which is available to authorized users.  相似文献   

5.
A new series of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) derivatives has been developed in order to explore their affinity and selectivity profile at the four adenosine receptor subtypes. In particular, the PTP scaffold was conjugated at the C2 position with the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole, a group believed to confer potency and selectivity toward the human (h) A2B adenosine receptor (AR) to the xanthine ligand 8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (CVT 6975). Interestingly, the synthesized compounds turned out to be inactive at the hA2B AR but they displayed affinity at the hA3 AR in the nanomolar range. The best compound of the series (6) shows both high affinity (hA3 AR Ki = 11 nM) and selectivity (A1/A3 and A2A/A3 > 9090; A2B/A3 > 909) at the hA3 AR. To better rationalize these results, a molecular docking study on the four AR subtypes was performed for all the synthesized compounds. In addition, CTV 6975 and two close analogues have been subjected to the same molecular docking protocol to investigate the role of the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole on the binding at the four ARs.  相似文献   

6.
Monoamine oxidase B (MAO-B) and nitric oxide synthase (NOS) have both been implicated in the pathology of neurodegenerative diseases. In an attempt to design dual-target-directed drugs that inhibit both these enzymes, a series of pteridine-2,4-dione analogues were synthesised. The compounds were found to be relatively weak NOS inhibitors but showed promising MAO-B activity with 6-amino-5-[(E)-3-(3-chloro-phenyl)-prop-2-en-(E)-ylideneamino]-1,3-dimethyl-1H-pyrimidine-2,4-dione and 6-[(E)-2-(3-chloro-phenyl)-vinyl]-1,3-dimethyl-1H-pteridine-2,4-dione inhibiting MAO-B with IC50 values of 0.602 and 0.314 μM, respectively. The pteridine-2,4-dione analogues thus show promise as scaffolds for the development of potent reversible MAO-B inhibitors and as observed in earlier studies, the most potent inhibitors were obtained with 3-chlorostyryl substitution.  相似文献   

7.
Syntheses and physicochemical properties of N-aryl-substituted imidazo-, pyrimido-, and 1,3-diazepino[2,1-f]purinediones are described. These derivatives were synthesized by the cyclization of 7-haloalkyl-8-bromo-1,3-dimethyl- or 1,3-dipropyl-xanthine derivatives with corresponding arylamines. The obtained compounds (1-40), which can be envisaged as sterically fixed and configurationally stable analogs of 8-styrylxanthines, were evaluated for their affinity to adenosine A(1) and A(2A) receptors, the receptor subtypes that are predominant in the brain. Selected compounds were additionally investigated for affinity to the A(2B) and A(3) receptor subtypes. Many of the compounds showed adenosine A(2A) receptor affinity at micromolar or submicromolar concentrations and were A(2A)-selective, for example, compound 23 with p-fluoro substituent displayed K(i) value of 0.147 microM at the rat A(2A) receptor and more than 170-fold-A(2A) selectivity, compound 17 with naphthyl substituent had K(i) value of 0.219 microM and a more than 114-fold-A(2A) selectivity. The compounds were somewhat weaker and less selective at the human receptor subtypes. Elongation of the dimethyl substituent to dipropyl in xanthine moiety improved affinity but reduced selectivity. 1,3-Dimethylimidazo-, pyrimido-, and diazepinopurinediones were evaluated in vivo as anticonvulsants in MES, ScMet, TTE tests and examined for neurotoxicity in mice (ip). Substances with pyrimido ring displayed protective activity in ScMet or in MES and ScMet tests, showing also neurotoxicity. The pyrimidine annelated ring is beneficial for both receptor affinity and anticonvulsant activity.  相似文献   

8.
Based on the spirotryprostatin-A structure, we designed, synthesized, and evaluated different series of compounds belonging to the diketopiperazine structural class as potential cell cycle modulators and cytotoxic agents. Starting from the spirooxoindolthiazolidine scaffold, amide coupling with Pro derivatives and intramolecular cyclization reactions are suitable synthetic methods to generate chemically diverse diketopiperazine system, such as hexahydropyrrolo[1,2-a][1,3]thiazolo[3,2-d]pyrazine-5,10-dione (structure I), hexahydropyrrolo[1,2-a] [1,3]thiazolo[3,4-d]pyrazine-5,10-dione (structure II) and spiroindol-2-one[3,3′]hexahydro-5,10H-pyrrolo[1,2-a][1,3]thiazolo[3,4-d]pyrazine-5,10-dione (structure III). Some of these compounds, especially those who belong to the series I and II, showed interesting cytotoxic activity.  相似文献   

9.
Eleven new sphingosine 1-phosphate receptor 2 (S1PR2) ligands were synthesized by modifying lead compound N-(2,6-dichloropyridin-4-yl)-2-(4-isopropyl-1,3-dimethyl-1H-pyrazolo[3,4-b]pyridin-6-yl)hydrazine-1-carboxamide (JTE-013) and their binding affinities toward S1PRs were determined in vitro using [32P]S1P and cell membranes expressing recombinant human S1PRs. Among these ligands, 35a (IC50?=?29.1?±?2.6?nM) and 35b (IC50?=?56.5?±?4.0?nM) exhibit binding potency toward S1PR2 comparable to JTE-013 (IC50?=?58.4?±?7.4?nM) with good selectivity for S1PR2 over the other S1PRs (IC50?>?1000?nM). Further optimization of these analogues may identify additional and more potent and selective compounds targeting S1PR2.  相似文献   

10.
Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivatives such as SCH 442416 display high affinity and selectivity as antagonists for the human A2A adenosine receptor (AR). We extended ether-linked chain substituents at the p-position of the phenyl group using optimized O-alkylation. The conjugates included an ester, carboxylic acid and amines (for amide condensation), an alkyne (for click chemistry), a fluoropropyl group (for 18F incorporation), and fluorophore reporter groups (e.g., BODIPY conjugate 14, Ki 15 nM). The potent and A2AAR-selective N-aminoethylacetamide 7 and N-[2-(2-aminoethyl)-aminoethyl]acetamide 8 congeners were coupled to polyamidoamine (PAMAM) G3.5 dendrimers, and the multivalent conjugates displayed high A2AAR affinity. Theoretical docking of an AlexaFluor conjugate to the receptor X-ray structure highlighted the key interactions between the heterocyclic core and the binding pocket of the A2AAR as well as the distal anchoring of the fluorophore. In conclusion, we have synthesized a family of high affinity functionalized congeners as pharmacological probes for studying the A2AAR.  相似文献   

11.
A new series of 7-aminopyrazolo[4,3-d]pyrimidine derivatives (131) were synthesized to evaluate some structural modifications at the 2- and 5-positions aimed at shifting affinity towards the human (h) A2A adenosine receptor (AR) or both hA2A and hA1 ARs. The most active compounds were those featured by a 2-furyl or 5-methylfuran-2-yl moiety at position 5, combined with a benzyl or a substituted-benzyl group at position 2. Several of these derivatives (2231) displayed nanomolar affinity for the hA2A AR (Ki = 3.62–57 nM) and slightly lower for the hA1 ARs, thus showing different degrees (3–22 fold) of hA2A versus hA1 selectivity. In particular, the 2-(2-methoxybenzyl)-5-(5-methylfuran-2-yl) derivative 25 possessed the highest hA2A and hA1 AR affinities (Ki = 3.62 nM and 18 nM, respectively) and behaved as potent antagonist at both these receptors (cAMP assays). Its 2-(2-hydroxybenzyl) analog 26 also showed a high affinity for the hA2A AR (Ki = 5.26 nM) and was 22-fold selective versus the hA1 subtype. Molecular docking investigations performed at the hA2A AR crystal structure and at a homology model of the hA1 AR allowed us to represent the hypothetical binding mode of our derivatives and to rationalize the observed SARs.  相似文献   

12.
Seven new 1,3-diazepinium chlorides exhibiting some structural similarities to the 1,4-benzodiazepines were synthesized. In a Hippocratic screen using mice, three of these salts, 3-methoxy-6-oxo-7,13-dihydro-6H-benzofuro[2,3-e]pyrido[1,2-a][1,3]diazepin-12-ium chloride (8a), 3-methoxy-9-methyl-6-oxo-7,13-dihydro-6H-benzofuro[2,3-e]pyrido[1,2-a][1,3]diazepin-12-ium chloride (8c) and 3-methoxy-11-methyl-6-oxo-7,13-dihydro-6H-benzofuro[2,3-e]pyrido[1,2-a][1,3]diazepin-12-ium chloride (8e) were examined for their effect on the central nervous system, and their activities compared to that of diazepam. On their own, salts 8a, 8c and 8e solicited no sedative effects on the behaviour of the animals. However, they elicited significant effects in combination with diazepam on diazepam-induced activities such as decreased motor activity, ataxia and loss of righting reflex. Compounds 8a and 8c were fitted into the pharmacophore/receptor model developed by Cook et al. with interaction at the L1, H1 and A2 sites indicating that they are potential inverse agonists of the Bz receptor. The compounds displayed some affinity for the α1 isoform of the GABAA/BzR (LDi interaction) but are non-selective for α5 (no L2 interaction). Results of binding affinity studies showed that compound 8a is mildly selective for the α1 receptor although not very potent (Ki = 746.5 nM). The significant potentiation of diazepam-induced ataxia and decreased motor activity by compounds 8a and 8c in the Hippocratic screen may be associated with α1 selectivity.  相似文献   

13.
Reaction of [Co(CO)3(NO)] with [2-NMe3-closo-2-CB10H10] in refluxing CH2Cl2 affords the mono- and di-cobalt complexes [1-NMe3-2-CO-2-NO-closo-2,1-CoCB10H10] (3) and [2,7-{Co(CO)(NO)}-7-(μ-H)-1-NMe3-2-CO-2-NO-closo-2,1-CoCB10H9] (4), respectively, of which 4 contains formally both Co(I) and Co(-I) centers. Compound 4 reacts with CO to give 3, or with donor ligands L in the presence of Me3NO to afford simple substituted species, [1-NMe3-2-L-2-NO-closo-2,1-CoCB10H10] (compounds 5; L = PEt3, PPh3, CNBut).  相似文献   

14.
In order to develop potent and selective focal adhesion kinase (FAK) inhibitors, synthetic studies on pyrazolo[4,3-c][2,1]benzothiazines targeted for the FAK allosteric site were carried out. Based on the X-ray structural analysis of the co-crystal of the lead compound, 8-(4-ethylphenyl)-5-methyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazine 4,4-dioxide 1 with FAK, we designed and prepared 1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin derivatives which selectively inhibited kinase activity of FAK without affecting seven other kinases. The optimized compound, N-(4-tert-butylbenzyl)-1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin-8-amine 4,4-dioxide 30 possessed significant FAK kinase inhibitory activities both in cell-free (IC50 = 0.64 μM) and in cellular assays (IC50 = 7.1 μM). These results clearly demonstrated a potential of FAK allosteric inhibitors as antitumor agents.  相似文献   

15.
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.  相似文献   

16.
A series of phenylimidazole-pyrazolo[1,5-c]quinazolines 1a-q was designed, synthesized and characterised as a novel class of potent phophodiesterase 10A (PDE10A) inhibitors. In this series, 2,9-dimethyl-5-(2-(1-methyl-4-phenyl-1H-imidazol-2-yl)ethyl)pyrazolo[1,5-c]quinazoline (1q) showed the highest affinity for PDE10A enzyme (IC50 = 16 nM).  相似文献   

17.
A series of optically pure (R)- and (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6,12(2H,11H)-dione derivatives was designed and synthesized as novel anthramycin analogues in a three-step, one-pot procedure, and tested for their antiproliferative activity on nine following cell lines: MV-4-11, UMUC-3, MDA-MB-231, MCF7, LoVo, HT-29, A-549, A2780 and BALB/3T3. The key structural features responsible for exhibition of cytotoxic effect were determined: the (S)-configuration of chiral center and the presence of hydrophobic 4-biphenyl substituent in the side chain. Introduction of bromine atom into the 8 position (8g) or substitution of dilactam ring with benzyl group (8m) further improved the activity and selectivity of investigated compounds. Among others, compound 8g exhibited selective cytotoxic effect against MV-4-11 (IC50?=?8.7?μM) and HT-29 (IC50?=?17.8?μM) cell lines, while 8m showed noticeable anticancer activity against MV-4-11 (IC50?=?10.8?μM) and LoVo (IC50?=?11.0?μM) cell lines. The cell cycle arrest in G1/S checkpoint and apoptosis associated with overproduction of reactive oxygen species was also observed for 8e and 8m.  相似文献   

18.
Vascular endothelial growth factor (VEGF) plays important roles in tumor angiogenesis, and the inhibition of its signaling pathway is considered an effective therapeutic option for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of 2-acylamino-6-phenoxy-imidazo[1,2-b]pyridazine derivatives. Hybridization of two distinct imidazo[1,2-b]pyridazines 1 and 2, followed by optimization led to the discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (23a, TAK-593) as a highly potent VEGF receptor 2 kinase inhibitor with an IC50 value of 0.95 nM. The compound 23a strongly suppressed proliferation of VEGF-stimulated human umbilical vein endothelial cells with an IC50 of 0.30 nM. Kinase selectivity profiling revealed that 23a inhibited platelet-derived growth factor receptor kinases as well as VEGF receptor kinases. Oral administration of 23a at 1 mg/kg bid potently inhibited tumor growth in a mouse xenograft model using human lung adenocarcinoma A549 cells (T/C = 8%).  相似文献   

19.
In this work, further structural investigations on the 8-amino-2-phenyl-6-aryl-1,2,4-triazolo[4,3-a]pyrazin-3-one series were carried out to achieve potent and selective human A2A adenosine receptor (AR) antagonists. Different ether and amide moieties were attached at the para-position of the 6-phenyl ring, thus leading to compounds 19 and 1018, respectively. Most of these moieties contained terminal basic rings (pyrrolidine, morpholine, piperidine and substituted piperazines) which were thought to confer good physicochemical and drug-like properties.Compounds 1116, bearing the amide linker, possessed high affinity and selectivity for the hA2A AR (Ki = 3.6–11.8 nM). Also derivatives 19, featuring an ether linker, preferentially targeted the hA2A AR but with lower affinity, compared to those of the relative amide compounds. Docking studies, carried out at the hA2A AR binding site, highlighted some crucial ligand-receptor interactions, particularly those provided by the appended substituent whose nature deeply affected hA2A AR affinity.  相似文献   

20.
A small molecule library of pyrido[2,3-d]pyrimidine-2,4-dione derivatives 616 was synthesized from 6-amino-1,3-disubstituted uracils 18, characterized, and screened for inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K). To understand the binding pocket of eEF-2K, structural modifications of the pyrido[2,3-d]pyrimidine were made at three regions (R1, R2, and R3). A homology model of eEF-2K was created, and compound 6 (A-484954, Abbott laboratories) was docked in the catalytic domain of eEF-2K. Compounds 6 (IC50 = 420 nM) and 9 (IC50 = 930 nM) are found to be better molecules in this preliminary series of pyrido[2,3-d]pyrimidine analogs. eEF-2K activity in MDA-MB-231 breast cancer cells is significantly reduced by compound 6, to a lesser extent by compound 9, and is unaffected by compound 12. Similar inhibitory results are observed when eEF-2K activity is stimulated by 2-deoxy-d-glucose (2-DOG) treatment, suggesting that compounds 6 and 9 are able to inhibit AMPK-mediated activation of eEF-2K to a notable extent. The results of this work will shed light on the further design and optimization of novel pyrido[2,3-d]pyrimidine analogs as eEF-2K inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号