首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Bromodomain-containing protein 4 (BRD4) is a key epigenetic regulator in cancer, and inhibitors targeting BRD4 exhibit great anticancer activity. By replacing the methyltriazole ring of the BRD4 inhibitor I-BET-762 with an N-methylthiazolidone heterocyclic ring, fifteen novel BRD4 inhibitors were designed and synthesized. Compound 13f had a hydrophobic acetylcyclopentanyl side chain, showing the most potent BRD4 inhibitory activity in the BRD4-BD1 inhibition assay (IC50 value of 110 nM), it also significantly suppressed the proliferation of MV-4-11 cells with high BRD4 level (IC50 value of 0.42 μM). Furthermore, the potent apoptosis-promoting and G0/G1 cycle-arresting activity of compound 13f were indicated by flow cytometry. As the downstream-protein of BRD4, c-Myc was in significantly low expression by compound 13f treatment in a dose-dependent manner. All the findings supported that this novel compound 13f provided a perspective for developing effective BRD4 inhibitors.  相似文献   

3.
Cyclin-dependent kinases (CDKs) are promising drug targets for various human diseases, especially for cancers. Scaffold hopping strategy was applied on CAN508, a known selective CDK9 inhibitor, and a series of pyrazolo[3,4-b]pyridine compounds were synthesized and evaluated in vitro as CDK2 and CDK9 inhibitors. Most compounds exhibited moderate to potent inhibitory activities against both CDK2/cyclin A and CDK9/cyclin T1 systems. Among them, compound 2e showed IC50 values of 0.36?μM for CDK2 and 1.8?μM for CDK9, respectively. Notably, the scaffold alteration seems to cause a shift in the selectivity profile of the inhibitors. In contrast to CAN508, compound 2k demonstrated remarkable selectivity toward CDK2 (265-fold over CDK9). Docking studies on compound 2k provided hints for further design of more potent and selective CDK2/CDK9 inhibitors.  相似文献   

4.
A novel, potent, and orally bioavailable inhibitor of the bromodomain of CBP, compound 35 (GNE-207), has been identified through SAR investigations focused on optimizing al bicyclic heteroarene to replace the aniline present in the published GNE-272 series. Compound 35?has excellent CBP potency (CBP IC50?=?1?nM, MYC EC50?=?18?nM), a selectively index of?>2500-fold against BRD4(1), and exhibits a good pharmacokinetic profile.  相似文献   

5.
BRD4 has emerged as an attractive target for anticancer therapy. However, BRD4 inhibitors treatment leads to BRD4 protein accumulation, together with the reversible nature of inhibitors binding to BRD4, which may limit the efficacy of BRD4 inhibitors. To address these problems, a protein degradation strategy based on the proteolysis targeting chimera (PROTAC) technology has been developed to target BRD4 recently. Herein, we present our design, synthesis and biological evaluation of a new class of PROTAC BRD4 degraders, which were based on a potent dihydroquinazolinone-based BRD4 inhibitor compound 6 and lenalidomide/pomalidomide as ligand for E3 ligase cereblon. Gratifyingly, several compounds showed excellent inhibitory activity against BRD4, and high anti-proliferative potency against human monocyte lymphoma cell line THP-1. Especially, compound 21 (BRD4 BD1, IC50 = 41.8 nM) achieved a submicromolar IC50 value of 0.81 μM in inhibiting the growth of THP-1 cell line, and was 4 times more potent than compound 6. Moreover, the mechanism study established that 21 could effectively induce the degradation of BRD4 protein and suppression of c-Myc. All of these results suggested that 21 was an efficacious BRD4 degrader for further investigation.  相似文献   

6.
7.
Both histone deacetylase (HDAC) and fibroblast growth factor receptor (FGFR) are important targets for cancer therapy. Although combining dual HDAC pharmacophore with tyrosine kinase inhibitors (TKIs) had achieved a successful progress, dual HDAC/FGFR1 inhibitors haven’t been reported yet. Herein, we designed a series of hybrids bearing 1H-indazol-3-amine and benzohydroxamic acids scaffold with scaffold hopping and molecular hybridization strategies. Among them, compound 7j showed the most potent inhibitory activity against HDAC6 with IC50 of 34?nM and exhibited the great inhibitory activities against a human breast cancer cell line MCF-7 with IC50 of 9?μM in vitro. Meanwhile, the compound also exhibited moderate FGFR1 inhibitory activities. This study provides new tool compounds for further exploration of dual HDAC/FGFR1 inhibition.  相似文献   

8.
Recently, diverse kinase inhibitors were reported having interaction with BRD4. It provided a strategy for developing a new structural framework for the next-generation BRD4-selective inhibitors. Starting from PLK1 kinase inhibitor BI-2536, we designed 18 compounds by modifying dihydropteridine core. Compound 23 showed potent BRD4 inhibitory activities with IC50 of 79 nM and no inhibitory activities for PLK1. Cell antiproliferation assay was performed and potent inhibitory activity against MV4;11 with IC50 of 1.53 μM. Cell apoptosis and western blotting indicated compound 23 induced apoptosis by down-regulating c-Myc. These novel selective BRD4 inhibitors provided new lead compounds for further drug development.  相似文献   

9.
A novel series of aminopyrimidinylisoindoline derivatives 1a-w having an aminopyrimidine scaffold as a hinge region binding motif were designed and synthesized. Among them, six compounds showed potent inhibitory activities against AXL kinase with IC50 values of submicromolar range. Especially, compound 1u possessing (4-acetylpiperazin-1-yl)phenyl moiety exhibited extremely excellent efficacy (IC50?=?<0.00050?μM). Their in vitro antiproliferative activities were tested over five cancer cell lines. Most compounds showed good antiproliferative activities against HeLa cell line. The kinase panel profiling of 50 different kinases and the selected inhibitory activities for the representative compound 1u were carried out. The compound 1u exhibited excellent inhibitory activities (IC50?=?<0.00050, 0.025, and 0.050?μM for AXL, MER, and TYRO3, respectively) against TAM family, together with potent antiproliferative activity against MV4-11 cell line (GI50?=?0.10?μM) related to acute myeloid leukemia (AML).  相似文献   

10.
A series of bezofuran appended 1,5-benzothiazepine compounds 7a–v was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. All analogs exhibited varied BChE inhibitory activity with IC50 value ranging between 1.0?±?0.01 and 72?±?2.8?μM when compared with the standard donepezil (IC50, 2.63?±?0.28?μM). Among the synthesized derivatives, compounds 7l, 7m and 7k exhibited the highest BChE inhibition with IC50 values of 1.0, 1.0 and 1.8?μM, respectively. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 7l with BChE. In addition, docking studies confirmed the results obtained through in vitro experiments and showed that most potent compounds bind to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. The synthesized compounds were also evaluated for their in vitro antibacterial and antifungal activities. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed high activity against both gram positive and gram negative bacteria and fungi.  相似文献   

11.
With the increasingly acquired resistance, relapse and side effects of known marketed BRAFV600E inhibitors, it’s significant to design the more effective and novel drugs. In this study, a series of novel pyrazole derivatives containing acetamide bond had been designed and synthesized on the basis of analysis of the endogenous ligands extracted from the known B-Raf co-crystals in the PDB database. Then, the compounds were evaluated for biological activities as potential BRAFV600E inhibitors. The bioassay results in vitro against three human tumor cell lines revealed that some of the compounds showed very impressed antiproliferative property. Among them, the compound 5r with IC50 values of 0.10?±?0.01?μM against BRAFV600E and 0.96?±?0.10?μM against A375 cell line, showed the most potent inhibitory effect, compared with the positive-controlled agents vemurafenib (IC50?=?0.04?±?0.004?μM for BRAFV600E, IC50?=?1.05?±?0.10?μM against A375). Further investigation confirmed that the compound 5r could induce A375 cell apoptosis, induce A375 cell death through changing mitochondrial membrane potential, and result in A375 cell arrest at the G1 phase of the cell cycle. Docking simulations results indicated that the compound 5r could bind tightly at the BRAFV600E active site. Meanwhile, 3D-QSAR model suggested that these compounds may be potential anticancer inhibitors. Overall, the article provided some new molecular scaffolds for the further BRAFV600E inhibitors.  相似文献   

12.
A series of novel thiazolidine-4-one urea analogues were designed, synthesized and biologically evaluated. The structure-activity relationship (SAR) at several positions of the scaffolds was investigated and its binding mode was analyzed by molecular modeling studies. Compound 17b proved to be the most potent one, and IC50 values against A549 and HT-29 cancer cell lines were 0.65?μM and 0.11?μM, respectively. The results of kinase profile demonstrated that compound 17b is a multikinase inhibitor that potently inhibits FLT3 (IC50?=?8.6?nM) and VEGFR2 (IC50?=?18.7?nM). The results of real-time live-cell imaging indicated that compound 17b showed excellent cytotoxicity and anti-proliferative activity against HT-29 cancer cells in a time- and dose-dependent manner, which was significantly potent than that of Cabozantinib. In addition, in vitro antitumor activity was associated with inducing cancer cell apoptosis and suppression of cancer cell migration.  相似文献   

13.
The bromodomain and extraterminal (BET) family of proteins play a crucial role in promoting gene expression of critical oncogenes. Novel BET bromodomain inhibitors with excellent potency, drug metabolism and pharmacokinetics (DMPK) properties were in strong need for development. We reported a series of potential BET inhibitors through incorporation of imidazole into pyridine scaffold. Among them, a novel BET inhibitor with 7-methylimidazo[1,5-a]pyrazin-8(7H)-one core, compound 28, was considered to be the most promising for in-depth study. Compound 28 exhibited excellent BRD4-inhibitory activity with IC50 value of 33 nM and anti-proliferation potency with IC50 value of 110 nM in HL-60 (human promyelocytic leukemia) cancer cell lines. Western Blot indicated that compound 28 can effectively trigger apoptosis in BxPc3 cells by modulating the intrinsic apoptotic pathway. In conclusion, these results suggested that compound 28 has merely potential for leukemia treatment.  相似文献   

14.
New nucleoside derivatives with nitrogen substitution at the C-6 position were prepared and screened initially for their in vitro anticancer bioactivity against human epithelial cancer cells (liver Huh7, colon HCT116, breast MCF7) by the NCI-sulforhodamine B assay. N6-(4-trifluoromethylphenyl)piperazine analog (27) exhibited promising cytotoxic activity. The compound 27 was more cytotoxic (IC50?=?1–4?μM) than 5-FU, fludarabine on Huh7, HCT116 and MCF7 cell lines. The most potent nucleosides (11, 13, 16, 18, 19, 21, 27, 28) were further screened for their cytotoxicity in hepatocellular cancer cell lines. The compound 27 demonstrated the highest cytotoxic activity against Huh7, Mahlavu and FOCUS cells (IC50?=?1, 3 and 1?μM respectively). Physicochemical properties, drug-likeness, and drug score profiles of the molecules showed that they are estimated to be orally bioavailable. The results pointed that the novel derivatives would be potential drug candidates.  相似文献   

15.
The NSD family (NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1) are histone lysine methyltransferases (HMTases) essential for chromatin regulation. The NSDs are oncoproteins, drivers of a number of tumors and are considered important drug-targets but the lack of potent and selective inhibitors hampers further therapeutic development and limits exploration of their biology. In particular, MMSET/NSD2 selective inhibition is being pursued for therapeutic interventions against multiple myeloma (MM) cases, especially in multiple myeloma t(4;14)(p16.3;q32) translocation that is associated with a significantly worse prognosis than other MM subgroups. Multiple myeloma is the second most common hematological malignancy, after non-Hodgkin lymphoma and remains an incurable malignancy.Here we report the discovery of LEM-14, an NSD2 specific inhibitor with an in vitro IC50 of 132?μM and that is inactive against the closely related NSD1 and NSD3. LEM-14-1189, a LEM-14 derivative, differentially inhibits the NSDs with in vitro IC50 of 418?μM (NSD1), IC50 of 111?μM (NSD2) and IC50 of 60?μM (NSD3). We propose LEM-14 and derivative LEM-14-1189 as tools for studying the biology of the NSDs and constitute meaningful steps toward potent NSDs therapeutic inhibitors.  相似文献   

16.
A series of novel phthalimide-alkylamine derivatives were synthesized and evaluated as multi-functions inhibitors for the treatment of Alzheimer’s disease (AD). The results showed that compound TM-9 could be regarded as a balanced multi-targets active molecule. It exhibited potent and balanced inhibitory activities against ChE and MAO-B (huAChE, huBuChE, and huMAO-B with IC50 values of 1.2 μM, 3.8 μM and 2.6?μM, respectively) with low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-9 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Interestingly, compound TM-9 abided by Lipinski’s rule of five. Furthermore, our investigation proved that TM-9 indicated weak cytotoxicity, and it could cross the blood-brain barrier (BBB) in vitro. The results suggest that compound TM-9, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer’s disease.  相似文献   

17.
Bromodomain-containing protein 4 (BRD4), consisting of two tandem bromodomains (BD1 and BD2), is key epigenetic regulator in fibrosis and cancer, which has been reported that BD1 and BD2 have distinct roles in post-translational modification. But there are few selective inhibitors toward those two domains. Herein, this study designed and synthesized a series of novel selective BRD4-BD1 inhibitors, using computer-aided drug design (CADD) approach focused on exploring the difference of the binding pockets of BD1 and BD2, and finding the His437 a crucial way to achieve BRD4-BD1 selectivity. Our results revealed that the compound 3u is a potent selective BRD4-BD1 inhibitor with IC50 values of 0.56?μM for BD1 but >100?μM for BD2. The compound exhibited a broad spectrum of anti-proliferative activity against several human cancer and fibroblastic cell lines, which might be related to its capability of reducing the expression of c-Myc and collagen I. Furthermore, it could induce apoptosis in A375 cells. To the contrary, the selective BD2 inhibitor, RVX-208, did not indicate any of these activities. Our findings highlight that the function of BRD4-BD1 might be predominant in fibrosis and cancer. And it is rational to further develop novel selective BRD4-BD1 inhibitors.  相似文献   

18.
A series of artemisinin derivatives with MDR reversal activity were designed and synthesized. All hybrids were screened to anticancer activities against four human cancer cell lines (A549, MCF-7, HepG-2, MDA-MB-231) and normal human hepatic cell (L02) in vitro. Most of the new compounds showed higher anticancer activities than artemisinin, among which compounds 11a and 11c displayed superior potency with IC50 6.78?μM and 5.25?μM against MCF-7, respectively. The further research indicated that the most potent 11c induced cell cycle arrest at G2 phase in MCF-7. Additionally, compound 11c showed remarkable MDR reversal activity which reversed adriamycin against MCF-7/ADR cells with IC50 0.76?μM.  相似文献   

19.
In the present study, a new class of compounds containing pyrido[3,4-d]pyrimidine scaffold with an acrylamide moiety was designed as irreversible EGFR-TKIs to overcome acquired EGFR-T790M resistance. The most promising compound 25h inhibited HCC827 and H1975 cells growth with the IC50 values of 0.025?μM and 0.49?μM, respectively. Meanwhile, 25h displayed potent inhibitory activity against the EGFRL858R (IC50?=?1.7?nM) and EGFRL858R/T790M (IC50?=?23.3?nM). 25h could suppress EGFR phosphorylation in HCC827 and H1975 cell lines and significantly induce the apoptosis of HCC827 cells. Additionally, compound 25h could remarkably inhibit cancer growth in established HCC827 xenograft mouse model at 50?mg/kg in vivo. These results indicated that the 2,4-disubstituted 6-(5-substituted pyridin-2-amino)pyrido[3,4-d]pyrimidine derivatives can serve as effective EGFR inhibitors and potent anticancer agents.  相似文献   

20.
A novel series of 4-methyl substituted pyrazole derivatives were designed, synthesized and biologically evaluated as potent glucagon receptor (GCGR) antagonists. In this study, compounds 9q, 9r, 19d and 19e showed high GCGR binding (IC50?=?0.09?μM, 0.06?μM, 0.07?μM and 0.08?μM, respectively) and cyclic-adenosine monophosphate (cAMP) activities (IC50?=?0.22?μM, 0.26?μM, 0.44?μM and 0.46?μM, respectively) in cell-based assays. Most importantly, the docking experiment demonstrated that compound 9r formed extensive hydrophobic interactions with the receptor binding pocket, making it justifiable to further investigate the potential of becoming a GCGR antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号