首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of Muscimol with 4-Aminobutyrate Aminotransferase   总被引:1,自引:1,他引:0  
Abstract: The reaction of muscimol as amino donor substrate for GABA transaminase (GABA-T) has been studied using enzyme purified from rabbit brain. Enzyme activity was assayed by measuring the glutamate produced using glutamate dehydrogenase. Kinetic parameters determined at 37°C were for GABA, K m (app) = 1.92 ± 0.24 m M , specific activity = 7.33 ± 0.27 μmol/min/mg ( k cat= 13.7s−1), and for muscimol, K m (app) = 1.27 ± 0.15 m M , specific activity = 0.101 ± 0.009 μmol/min/mg ( k cat= 0.19s−1). Addition of muscimol to the enzyme caused the spectral changes associated with conversion of the pyridoxaldimine form to the pyridoxamine form, and the first-order rate constant for the reaction showed a dependence on muscimol concentration that followed saturation kinetics, with a K = 1.1 ±0.18 m M and k max= 0.065 ± 0.004 s−1 (19°C). The rate of spectral change observed on addition of muscimol to ornithine transaminase was extremely slow—at least an order of magnitude slower than that seen with GABA-T.  相似文献   

2.
GABAA受体的神经药理学研究进展   总被引:9,自引:0,他引:9  
配体闸门离子通道超家族成员之一的GABAA受体,是一种介导抗焦虑药物、镇静药物、抗惊厥药物、肌肉驰缓药物和失忆活动的多功能药物作用靶标。本文综述了近年来国外有关GABAA受体的神经药理学研究进展。  相似文献   

3.
GABA-C受体/通道的最新研究进展   总被引:1,自引:0,他引:1  
赵晓萍  陆振虞 《生命科学》2007,19(4):451-455
目前已有很多关于GABA-C受体/通道在视网膜中功能的研究报道,但近年来发现它在哺乳动物的视网膜外的组织,如丘脑、海马、垂体、脊髓、小脑和胃肠道等也有表达并参与了相关激素的调控.本文将主要叙述GABA-C受体/通道在分子结构、分布和药理学特性方面较新的研究进展及参与相关激素包括褪黑激素、催乳素、生长激素和促甲状腺激素调控的研究.  相似文献   

4.
A型γ氨基丁酸受体结构及其有关药物   总被引:3,自引:0,他引:3  
A型γ氨基丁酸(GABAA)受体是中枢神经系统内最重要的抑制性神经递质GABA的受体,是配体门控离子通道超家族成员之一。本文对国内外有关GABAA受体的结构与功能的关系以及与其相互作用的有关药物进行了讨论。  相似文献   

5.
An asymmetric distribution of GABA binding sites was found in the cerebral cortex, hippocampus, cerebellar hemispheres, striatum, and thalamus. Higher levels of [3H]GABA binding were observed in the left-side of most brain areas and in a greater percentage of adult rats, but the opposite asymmetry was found in the thalamus. A similar left-right difference in cerebral hemispheres was also found in five day-old rats, suggesting the genetic predetermination of asymmetry.  相似文献   

6.
A simple method for the determination of the proportion of true GABA within labeled GABA used for membrane binding assay is presented. The method is intended for the assessment of the integrity of refrigerator (+4°C) stored labeled neurotransmitter. Its application allows a precise determination of the binding parameters.  相似文献   

7.
The release of [3H]-aminobutyric acid (GABA) and its radioactive metabolites from slices of the cerebral cortex, cerebellum, striatum and brain stem of developing and adult mice was studied. The slices were incubated and superfused in the absence and presence of the GABA aminotransferase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Exposure to 100 M AOAA totally inhibited GABA-T and all radioactivity released from slices was in authentic GABA. In studies on developing brain the 10-M concentration was also effective enough, except in cerebellar slices. In the absence of AOAA the major part of radioactivity spontaneously released from slices of adult cerebral cortex and cerebellum was tritiated water and still about one third part in the presence of 10 M AOAA. Potassium stimulation induced only the release of radioactive GABA but not labeled metabolites in both presence and absence of AOAA. AOAA reduced the stimulation-induced release of GABA. It is recommended that the use of GABA-T inhibitors should be discontinued in release experiments. Then labeled GABA must be separated in the effluents from its radioactive breakdown products.  相似文献   

8.
Abstract: A bioluminescent GABA assay is described. The principle of the procedure is based on the action of GABASE (GABA-aminotransferase plus succinic semialdehyde dehydrogenase), coupled to the detection of succinic semialdehyde and NADH, using Photobacterium luciferase. The method was used for monitoring GABA release from depolarized brain slices.  相似文献   

9.
gamma-Aminobutyric acid (GABA) steady-state levels and turnover rates have been determined in 15 brain areas of 21-day- and 3-month-old DBA/2J (DBA) and C57B1/6J (C57) mice. These two inbred strains differ by their susceptibility to audiogenic seizures; moreover, the involvement of GABAergic neurotransmission has been suggested in the control of this behavior. Turnover rates are generally higher at 21 days than at 3 months of age. There are few significant differences in the GABA steady-state levels between 21-day-old seizure-prone DBA mice when compared with seizure-resistant C57 mice. In the DBA mice, the steady-state level is higher in the olfactory bulbs and lower in the posterior colliculus and the olfactory tubercles than in the C57 mice. Although there are some significant differences in GABA turnover rates and steady-state levels, intra or inter strains, it is difficult to correlate directly these differences with seizure susceptibility.  相似文献   

10.
1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders.2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance.3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.  相似文献   

11.
GABA对小鼠大脑皮质中GABA受体胚胎发育的调节   总被引:1,自引:1,他引:0  
陈忠  陆勤 《动物学研究》1997,18(3):299-304
本文用GABA及其受体激动剂和拮抗剂处理培养的胚胎小鼠大脑皮层神经细胞以及精确计时的妊娠小鼠,用放射配体结合法检测GABAA及GABAB的结合位点数目,研究了GABA对小鼠大脑皮层GABA受体胚胎发育的调节作用,结果表明:①GABA可使培养15—17天妊龄的胚胎小鼠大脑皮层神经细胞及出生第1天的仔鼠大脑皮层中的GABAA及GABAB受体数目增加,这种作用可被蝇蕈醇(Mus)及巴氯芬(Bac)分别模拟,对GABAA受体的作用可为荷包牡丹碱(Bic)所阻断;②用GABA处理妊娠7—13天的小鼠,仔鼠出生第1天其大脑皮层的GABAA及GABAB受体数目均无变化;③用GABA处理妊娠14—19天的小鼠,仔鼠出生的第1天其大脑皮层中的GABAA受体数目增加而GABAB受体数目不变;④用GABA处理妊娠7-19天的小鼠,仔鼠出生第1天其大脑皮层中GABAA及GABAB受体数目增加。这说明在胚胎发育的特定时期内,GABA可诱导其受体数目的增加,这个作用是由GABA受体调节的。  相似文献   

12.
Summary The influence of glutamate on the GABA-activated Cl- conductance was studied in the slowly adapting stretch-receptor neuron and dactylopodite opener muscle fibre of the crayfish (Astacus astacus) using a two-microelectrode and a three-microelectrode voltage clamp, respectively. Glutamate (0.5–1.0 mM) had no effect on the GABA-activated conductance in either preparation. This indicates that the availability of the inhibitory channels for activation of GABA is not influenced by glutamate. The present results are in sharp contrast to those obtained by Franke et al. (J Comp Physiol A 159:591–609, 1986) in experiments on excised membrane patches, which suggested that glutamate is capable of both activating and desensitizing inhibitory postsynaptic channels in the crayfish opener muscle fibre.Abbreviations GABA -aminobutyric acid - GGABA and G GABA p GABA-gated conductance and peak conductance - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - I current - SRN stretch-receptor neuron - Vm and Vl membrane voltage in two- and three-microelectrode voltage clamp, respectively  相似文献   

13.
Abstract: To see the effect of a γ-aminobutyric acid GABA uptake inhibitor on the efflux and content of endogenous and labeled GABA, rat cortical slices were first labeled with [3H]GABA and then superfused in the absence or presence of 1 mM nipecotic acid. Endogenous GABA released or remaining in the slices was measured with high performance liquid chromatography, which was also used to separate [3H]GABA from its metabolites. In the presence of 3 mM K+, nipecotic acid released both endogenous and [3H]GABA, with a specific activity four to five times as high as that present in the slices. The release of labeled metabolite(s) of [3H]GABA was also increased by nipecotic acid. The release of endogenous GABA evoked by 50 mM K+ was enhanced fourfold by nipecotic acid but that of [3H]GABA was only doubled when expressed as fractional release. In a medium containing no Ca2+ and 10 mM Mg2+, the release evoked by 50 mMK+ was nearly suppressed in either the absence or the presence of nipecotic acid. In the absence of nipecotic acid electrical stimulation (bursts of 64 Hz) was ineffective in evoking release of either endogenous or [3H]GABA, but in the presence of nipecotic acid it increased the efflux of endogenous GABA threefold, while having much less effect on that of [3H]GABA. Tetrodotoxin (TTX) abolished the effect of electrical stimulation. Both high K+ and electrical stimulation increased the amount of endogenous GABA remaining in the slices, and this increase was reduced by omission of Ca2+ or by TTX. The results suggest that uptake of GABA released through depolarization is of major importance in removing GABA from extracellular spaces, but the enhancement of spontaneous release by nipecotic acid may involve intracellular heteroexchange. Depolarization in the presence of Ca2+ leads to an increased synthesis of GABA, in excess of its release, but the role of this excess GABA remains to be established.  相似文献   

14.
Abstract

Γ-aminobutyric acid (GABA) is a multifunctional molecule found in the nervous system and non-neuronal tissues. GABA receptors combine with GABA molecules and transmit signal stimuli into cells. In addition to traditional neurotransmission and regulation of secretion, GABA and GABA receptors are involved in cell differentiation and proliferation throughout peripheral organs, as well as in tumorigenesis. The exact mechanism of the GABAergic system in regulating tumor development is unclear, but many studies have revealed that GABA receptors exert critical regulative effects on tumor cell proliferation and migration. In this review, the molecular structure, distribution and biological function of GABA receptors associated with tumorigenesis are described. Recent advances in the elucidation of mechanisms underlying GABAergic signaling control over tumor growth are also discussed.  相似文献   

15.
The objective of the present study was to compare the effects of elevation of GABA concentration and those of inactivation ofl-ornithine: 2-oxoacid aminotransferase (OAT) on the in vivo metabolism ofl-ornithine (Orn) in brain. Vigabatrin (4-aminohex-5-enoic acid) and gabaculine (5-amino-1,3-cyclohexadienyl carboxylic acid), two well known inactivators of GABA-T, were used to elevate brain GABA concentrations. The latter inactivates OAT also. Transamination of Orn is, from a quantitative point of view, a significant reaction in mouse brain. GABA is a feed-back regulator of OAT. Within GABAergic neurons Orn concentration may be regulated by endogenous GABA. Extensive inactivation of OAT causes a considerable increase of Orn concentration, both in synaptosomes and in non-synaptosomal compartments. The results are compatible with a role of Orn as precursor of glutamate and/or GABA in certain neurons.  相似文献   

16.
17.
The adaptation of cells to hyperosmotic conditions involves accumulation of organic osmolytes to achieve osmotic equilibrium and maintenance of cell volume. The Na+ and Cl-coupled betaine/GABA transporter, designated BGT-1, is responsible for the cellular accumulation of betaine and has been proposed to play a role in osmoregulation in the brain. BGT-1 is also called GAT2 (GABA transporter 2) when referring to the mouse transporter homologue. Using Western Blotting the expression of the mouse GAT2 protein was investigated in astrocyte primary cultures exposed to a growth medium made hyperosmotic (353±2.5 mosmol/kg) by adding sodium chloride. A polyclonal anti-BGT-1 antibody revealed the presence of two characteristic bands at 69 and 138 kDa. When astrocytes were grown for 24 h under hyperosmotic conditions GAT2 protein was up-regulated 2–4-fold compared to the level of the isotonic control. Furthermore, the expected dimer of GAT2 was also up-regulated after 24 h under the hyperosmotic conditions. The [3H]GABA uptake was examined in the hyperosmotic treated astrocytes, and characterized using different selective GABA transport inhibitors. The up-regulation of GAT2 protein was not affecting total GABA uptake but the hyperosmotic condition did change total GABA uptake possibly involving GAT1. Immunocytochemical studies revealed cell membrane localization of GAT2 throughout astroglial processes. Taken together, these results indicate that astroglial GAT2 expression and function may be regulated by hyperosmolarity in cultured mouse astrocytes, suggesting a role of GAT2 in osmoregulation in neural cells.  相似文献   

18.
gamma-Aminobutyric acid (GABA) concentrations were measured in CSF specimens from two large groups of control subjects, one without neurological or psychiatric disease, and one with a variety of neurological disorders not known to involve altered GABAergic function in brain. CSF GABA was also measured in patients with Huntington's chorea and in patients with other choreiform disorders. GABA was measured in CSF by a modification of the ion exchange-fluorometric method that featured use of a relatively large cation exchange column, and a markedly decreased quantity of sulfosalicylic acid for deproteinization of CSF. Mean BABA concentrations in CSF were 87 and 77 nmol/liter for neurologically normal and abnormal control subjects, 82 nmol/liter for the Huntington's chorea patients, and 105 nmol/liter for patients with other forms of chorea. The mean concentration of homocarnosine was not reduced in CSF of Huntington's chorea patients as compared with controls. Mean CSF GABA concentrations found in control subjects were less than half the lowest control means previously reported. These low values are attributable in part to a reduction in on-column hydrolysis of conjugated forms of GABA in CSF, which can be produced by excessive sulfosalicylic acid, and in part to improved chromatographic resolution of GABA from other unknown o-phthalaldehyde-reactive compounds in CSF. Analysis of free GABA in CSF does not appear useful for diagnosis of suspected Huntington's chorea, nor as a possible predictive test for persons genetically at risk for Huntington's chorea.  相似文献   

19.
应用同位素示踪和神经组织离体培育的方法,揭示了不同年龄大鼠 CNS 中七个不同区域积聚 GABA 能力的差异。(1)皮层、海马、尾核、下丘脑积聚 GABA 的能力随年龄增长显著增强;而脊髓、垂体积聚 GABA 的能力随年龄增长而显著减弱。(2)年龄对小脑积聚GABA 的能力无明显影响。(3)七个区域积聚 GABA 能力的总和随年龄增长不断增强。证明CNS 中 GABA 系统功能变化与生长、发育、衰老密切相关。  相似文献   

20.
Abstract: Two groups of GABA (γ-aminobutyric acid) analogues, one comprising derivatives of β-proline and the other compounds structurally related to nipecotic acid, were investigated as potential inhibitors of high-affinity GABA transport in neurons and glial cells, as well as displacers of GABA receptor binding. In addition to cis -4-hydroxynipecotic acid, which is known as a potent inhibitor of GABA uptake, homo-β-proline was the only compound which proved to be a potent inhibitor of glial as well as neuronal GABA uptake. IC50 values for GABA uptake into glial cells and brain cortex "prisms" were 20 and 75 μM, respectively, and the IC50 value obtained for GABA uptake into cultured neurons was 10 μM. A kinetic analysis of the action of homo-β-proline on GABA uptake into cultured astrocytes and neurons showed that this compound acts as a competitive inhibitor of GABA uptake in both cell types. From the apparent K m values, K i values for homo-β-proline of 16 and 6 μM could be calculated for glial and neuronal uptake, respectively. This mechanism of action strongly suggests that homo-β-proline interacts with the GABA carriers. Furthermore, homo-β-proline also displaced GABA from its receptor with an IC50 value of 0.3 μM. The cis -4-hydroxynipecotic acid analogues, cis- and trans-4-mercaptonipecotic acid, had no inhibitory effect on glial or neuronal GABA uptake. Other SH reagents, PCMB, NEM and DTNB, were shown to be relatively weak inhibitors of GABA uptake into cultured astrocytes, suggesting that SH groups are not directly involved in the interaction between GABA and its transport carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号