首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用流式细胞技术和激光共聚焦显微镜技术观察EV71感染前后,细胞内钙离子分布变化情况。细胞感染EV71后,细胞内质网内钙离子浓度显著降低,细胞质及线粒体内钙离子浓度显著升高。 EV71的感染能够引起宿主细胞内钙离子的分布变化,这种变化可能会调节病毒与宿主细胞间的一系列相互作用。  相似文献   

2.
Urotensin II (U‐II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U‐II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U‐II and its receptor at this level. We report here that U‐II produces an increase in cytosolic Ca2+ concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca2+ release from the endoplasmic reticulum via inositol 1,4,5‐trisphosphate receptor; and (ii) Ca2+ influx through P/Q‐type Ca2+ channels. In addition, U‐II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U‐II into nucleus ambiguus elicits dose‐dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U‐II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection.

  相似文献   


3.
It has been established that inositol 1,4,5-trisphosphate(IP3) is responsible for the mobilization of calcium(Ca2+) from intracellular locations in a wide variety of tissues, and that this response triggers the stimulation of several hormones and neurotransmitters. However, these phenomena have yet to be examined in the mammary epithelium. Ca2+ uptake from the medium into the endoplasmic reticulum(ER) and Golgi apparatus in vitro in both pregnant and lactating mouse mammary epithelial cells was studied and a strong Ca2+ release from these organelles into the medium with the use of IP3 was shown. The Ca2+ uptake and its release due to IP3 was also usually greater during pregnancy than lactation.  相似文献   

4.
Ca2+ uptake into the endoplasmic reticulum (ER) is mediated by Ca2+ ATPase isoforms, which are all selectively inhibited by nanomolar concentrations of thapsigargin. Using ATP/Mg2+-dependent 45Ca2+ transport in rat brain microsomes, tissue sections, and permeabilized cells, as well as Ca2+ imaging in living cells we distinguish two ER Ca2+ pools in the rat CNS. Nanomolar levels of thapsigargin blocked one component of brain microsomal 45Ca2+ transport, which we designate as the thapsigargin-sensitive pool (TG-S). The remaining component was only inhibited by micromolar thapsigargin, and thus designated as thapsigargin resistant (TG-R). Ca2+ ATPase and [32P]phosphoenzyme assays also distinguished activities with differential sensitivities to thapsigargin. The TG-R Ca2+ uptake displayed unique anion permeabilities, was inhibited by vanadate, but was unaffected by sulfhydryl reduction. Ca2+ sequestered into the TG-R pool could not be released by inositol-1,4,5-trisphosphate, caffeine, or cyclic ADP-ribose. The TG-R Ca2+ pool had a unique anatomical distribution in the brain, with selective enrichment in brainstem and spinal cord structures. Cell lines that expressed high levels of the TG-R pool required micromolar concentrations of thapsigargin to effectively raise cytoplasmic Ca2+ levels. TG-R Ca2+ accumulation represents a distinct Ca2+ buffering pool in specific CNS regions with unique pharmacological sensitivities and anatomical distributions.  相似文献   

5.
The relative importance of mitochondria, the Na(+)/Ca(2+) exchanger (NCX) and the endoplasmic reticulum (ER) in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) were examined in bovine chromaffin cells using fura-2 for average [Ca(2+)](i) and amperometry for secretory activity, which reflects the local Ca(2+) concentration near the exocytotic sites. Chromaffin cells were stimulated by a high concentration of K(+) when the three Ca(2+) removal mechanisms were individually or simultaneously inhibited. When the mitochondrial Ca(2+) uptake was inhibited, the [Ca(2+)](i) decayed at a significantly slower rate and the secretory activity was higher than the control cells. The NCX appears to function only in the initial phase of [Ca(2+)](i) decay and when the ER Ca(2+) pump is blocked. Similarly, the ER had a significant effect on the [Ca(2+)](i) decay and on the secretion only when the NCX was blocked. Inhibition of all three mechanisms leads to a substantial delay in [Ca(2+)](i) recovery and an increase in the secretion. The results suggest that the three mechanisms work together in the regulation of the Ca(2+) near the Ca(2+) channels and exocytotic sites and therefore modulate the secretory activity. When Ca(2+) diffuses away from the exocytotic sites, the mitochondrial Ca(2+) uptake becomes the dominant mechanism.  相似文献   

6.
7.
8.
利用焦锑酸盐和磷酸铅沉淀技术分别对NaHCO3胁迫条件下星星草(Puccinellia tenuiflora)根中Ca2+和Ca2+-ATPase进行超微细胞化学定位研究,旨在进一步探讨Ca2+在NaHCO3胁迫诱导胞内信号转导过程中的作用,以及Ca2+-ATPase活性定位变化与NaHCO3胁迫下星星草抗盐碱能力的关系。结果表明:在正常状态下,根毛区细胞质内Ca2+较少,主要位于质膜附近和液泡中,Ca2+-ATPase主要定位于质膜和液泡膜,有一定活性。在0.448%NaHCO3胁迫下,根毛区细胞质中Ca2+增多,液泡中Ca2+减少,且主要集中于液泡膜附近,质膜和液泡膜Ca2+-ATPase活性明显升高。在1.054%NaHCO3胁迫下,细胞质中分布的Ca2+增多,而液泡中Ca2+极少,Ca2+-ATPase活性也降低。以上结果表明,Ca2+亚细胞定位和Ca2+-ATPase活性变化在星星草响应NaHCO3胁迫的信号传递过程中具有重要作用。  相似文献   

9.
Sucrase-isomaltase (SI) is the major disaccharidase of the small intestine, exhibiting a broad α-glucosidase activity profile. The importance of SI in gut health is typified by the development of sucrose and starch maldigestion in individuals carrying mutations in the SI gene, like in congenital sucrase-isomaltase deficiency (CSID). Common and rare defective SI gene variants (SIGVs) have also been shown to increase the risk of irritable bowel syndrome (IBS) with symptoms and clinical features similar to CSID and also in symptomatic heterozygote carriers. Here, we investigate the impact of the most abundant and highly pathogenic SIGVs that occur in heterozygotes on wild type SI (SIWT) by adapting an in vitro system that recapitulates SI gene heterozygosity. Our results demonstrate that pathogenic SI mutants interact avidly with SIWT, negatively impact its enzymatic function, alter the biosynthetic pattern and impair the trafficking behavior of the heterodimer. The in vitro recapitulation of a heterozygous state demonstrates potential for SIGVs to act in a semi-dominant fashion, by further reducing disaccharidase activity via sequestration of the SIWT copy into an inactive form of the enzymatic heterodimer. This study provides novel insights into the potential role of heterozygosity in the pathophysiology of CSID and IBS.  相似文献   

10.
邓娟  白洁 《生命科学》2012,(10):1169-1173
帕金森病是一种常见的神经系统退行性疾病,内质网应激在帕金森病发病过程中具有重要的作用。瞬时受体电位阳离子通道1(transient receptor potential channel 1,TRPCI)是非选择性的阳离子通道,主要位于细胞膜上,叮以调节Ca2+的内流和抑制内质网应激所致的神经元凋亡。Ca2+是细胞内重要的第二信使,其浓度的稳定对维持细胞的功能起着重要作用。内质网是细胞内Ca2+储存的重要细胞器。因此,TRPCI和Ca2+在帕金森病中起着重要作用。综述了TRPCI和Ca2+与帕金森病内质网应激的相关进展。  相似文献   

11.
Extracellular Ca2+ is required for capacitation and fertilization in the mouse, but very little is known about the ability of other divalent cations to substitute for Ca2+. In this study, Sr2+, Ba2+, and Mg2+ were evaluated for their ability to support capacitation, the acrosome reaction, hyperactivated motility, and fertilization. Ba2+ proved to be ineffective, but Mg2+-containing medium was able to support capacitation to a greater extent than unsupplemented Ca2+-deficient media; despite this, Ca2+ was required for fertilization. In contrast, Sr2+ proved capable of substituting for Ca2+ in all events. Furthermore, Sr2+-induced responses were indistinguishable from the corresponding Ca2+-induced ones: Sperm capacitated at the same rate and underwent the acrosome reaction to the same extent. However, demonstration of sperm:egg fusion in Sr2+ required the use of zona-free eggs. This was due not to the inability of the sperm to penetrate the zona but to the very rapid activation and cortical granule release by eggs in response to Sr2+. When zona-intact eggs were used, the block to polyspermy had been mounted by the time sperm had penetrated the zona. A 15 min exposure to Sr2+ was sufficient to block sperm fusion, but a longer exposure was required to ensure the resumption of meiosis in eggs; such a response was surprising in that the eggs were freshly ovulated and not susceptible to activation by many different treatments. Thus Sr2+ can profoundly affect both gametes in the mouse: It substitutes completely for Ca2+ in sperm responses and rapidly activates eggs, possibly by displacing Ca2+ from intracellular stores into the cytoplasm, where the Ca2+ can then trigger the various events of activation.  相似文献   

12.
Prostate cancer (PC) is one of the most common malignant tumors in man. Peimine (PM) is a bioactive substance isolated from Fritillaria. Previous studies have shown that PM could inhibit the occurrence of a variety of cancers. However, the roles of PM in PC and its related mechanism have not been elucidated. Calcium (Ca2+) is an important intracellular messenger involved in a variety of cell processes. In this study, we found that the appropriate doses of PM (2.5, 5, and 10 μM) significantly inhibited the growth of PC cells (DU-145, LNCap, and PC-3), but has no significant effect on normal prostate cells (RWPE-1). In addition, PM treatment inhibited the invasion and migration of PC-3 cells and blocked the epithelial-mesenchymal transition process. These effects were exhibited a dose-dependent manner. Furthermore, the current results also showed that PM treatment significantly increased the Ca2+ concentration, the increased Ca2+ promoted the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK), further inhibited the growth and invasion of PC-3 cells, and induced its apoptosis. Ca2+ chelator BAPTA-AM (1 μM) could counteract the increase of intracellular Ca2+ concentration. Similarly, JNK pathway inhibitor SP600125 (10 μM) also inhibited cell growth and invasion and induced apoptosis. In addition, experiments in nude mice showed that PM inhibited tumor formation through Ca2+/CaMKII/JNK signaling pathway. In conclusion, our results show that PM inhibits the growth and motility of prostate cancer cells and induces apoptosis by disruption of intracellular calcium homeostasis through Ca2+/CaMKII/JNK pathway.  相似文献   

13.
研究了Ca2+ 对番茄(Lycopersicon esculentum Mill cv. Lichun)黄化幼苗乙烯反应的影响.通过测定不同Ca2+ 浓度条件下番茄黄化幼苗的"三重反应"、内源乙烯释放量、乙烯受体基因NEVER-RIPE(NR)表达量及胞内CaM含量的变化,结果发现,随着培养基中Ca2+ 浓度从0 mmol/L增加到3.8 mmol/L,番茄黄化幼苗的"三重反应"表型明显增强,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有不同程度的增加;当Ca2+ 浓度由3.8 mmol/L进一步增加到10 mmol/L时,番茄黄化幼苗"三重反应"表型受到抑制,内源乙烯释放量、 NR基因的表达量及胞内CaM的含量都有所下降.因此,Ca2+ 对番茄黄化幼苗"三重反应"的影响与Ca2+ 调节内源乙烯合成和乙烯受体基因的表达有关,而且Ca2+ 可能是通过CaM含量的变化来调节乙烯作用的.  相似文献   

14.
We examined Ba2+ influx using isotopic and fura-2 techniques in transfected Chinese hamster ovary cells expressing the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). Ba2+ competitively inhibited exchange-me diated 45Ca2+ uptake with a K i ∼ 3 mM. Ba2+ uptake was stimulated by pretreating the cells with ouabain and by removing extracellular Na+, as expected for Na+/Ba2+ exchange activity. The maximal velocity of Ba2+ accumulation was estimated to be 50% of that for Ca2+. When the monovalent cation ionophore gramicidin was used to equilibrate internal and external concentrations of Na+, Ba2+ influx was negligible in the absence of Na+ and increased to a maximum at 20–40 mM Na+. At higher Na+ concentrations, Ba2+ influx declined, presumably due to the competition between Na+ and Ba2+ for transport sites on the exchanger. Unlike Ca2+, Ba2+ did not appear to be taken up by intracellular organelles: Thus, 133Ba2+ uptake in ouabain-treated cells was not reduced by mitochondrial inhibitors such as Cl-CCP or oligomycin-rotenone. Moreover, intracellular Ca2+ stores that had been depleted of Ca2+ by pretreatment of the cells with ionomycin (a Ca2+ ionophore) remained empty during a subsequent period of Ba2+ influx. Ca2+ uptake or release by intracellular organelles secondarily regulated exchange activity through alterations in [Ca2+]i. Exchange-mediated Ba2+ influx was inhibited when cytosolic [Ca2+] was reduced to 20 nM or less and was accelerated at cytosolic Ca2+ concentrations of 25–50 nM. We conclude that (a) Ba2+ substitutes for Ca2+ as a transport substrate for the exchanger, (b) cytosolic Ba2+ does not appear to be sequestered by intracellular organelles, and (c) exchange-mediated Ba2+ influx is accelerated by low concentrations of cytosolic Ca2+.  相似文献   

15.
Alterations in the liver of rats 6 h after a dose of phenobarbitone have been studied by subcellular fractionation, conventional electron microscopy and morphometric analysis. The area immediately surrounding the central vein was the only area to undergo any alterations. There was a morphometrically measurable but not observable cellular hypertrophy of 71% whilst the hepatocyte complement of rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER) was increased by 72% and 93% respectively. The increases in RER and SER were not apparent by observation and it is assumed that they have been diluted by the cell hypertrophy to 1% and 22% which must be below the threshold for detection by subjective observation. Following subcellular fractionation and measurement of microsomal protein, there was no significant difference in the level of microsomes isolated from control or treated rats. Therefore, the morphometrically measured increase in RER and SER would appear to be restricted to a relatively small population of hepatocytes adjacent to the central vein. Such an increase would represent only a small percentage of total microsomes in a homogenate and would almost certainly be masked by variation in animals and techniques. Disruption of RER was also observed in hepatocytes that would proliferate their SER should phenobarbitone treatment have been continued. Therefore this RER disruption would seem in no way to interfere with the process of membrane and enzyme synthesis.  相似文献   

16.
17.
以Fluo-3AM为游离Ca2+荧光探针,利用激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope,LSCM)对烟草悬浮细胞在热激诱导的凋亡过程中Ca2+时空分布进行了研究。结果显示,在正常细胞中,Ca2+集中分布在细胞壁和细胞核中,细胞质中分布较少;在凋亡早期细胞中,细胞质中Ca2+的浓度增加;在凋亡晚期的细胞中,细胞核中的Ca2+浓度增加较为明显。结果提示,在凋亡过程中,Ca2+的定位分布存在一定的规律。  相似文献   

18.
Preserving brain function and cognitive faculties during aging and psychiatric diseases (e.g. psychotic, anxiety and affective disorders, dementia) is essential for the self-reliance and quality of life of patients. Cognitive loss involves not only memory, but also motor function. The decrease of catecholaminergic and excitatory neurotransmissions, as well as of protein phosphorylation, have currently been identified as prominent biological markers of the above-mentioned diseases. Such deleterious biological events are well known to occur downstream of a progressive decline of intracellular Ca2+ signalling. This latter constitutes a key target for the neuronal plasticity that has also been reported during aging and psychiatric disorders. Most of the medicines used in psychiatry are active on the sigma-1 receptor. This membrane bound receptor is widely distributed in memory-associated cortical and motor-related brainstem areas, prompting the hypothesis that it might contribute to the pathophysiology of these behavioural brain diseases. The sigma-1 receptor is characterized by a unique mode of action by regulating both Ca2+ entry at the plasma membrane level (i.e. via potassium channels, voltage-sensitive Ca2+ channels) and Ca2+ mobilization from endoplasmic stores [i.e. via Ins(1,4,5)P3 receptors]. This review presents recent data supporting the notion that drugs acting via the endoplasmic reticulum-coupled sigma-1 receptor might reverse these deleterious events by restoring both extra- and intra-cellular Ca(2+)-dependent neuronal responses.  相似文献   

19.
The P2U purinergic agonist ATP (0.3 mM) elicited an increase in [Ca2+]i due to Ca2+ release from intracellular stores in transfected Chinese hamster ovary cells that express the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). The following observations indicate that ATP-evoked Ca2+ release was accompanied by a Ca2+- dependent regulatory activation of Na+/Ca2+ exchange activity: Addition of extracellular Ca2+ (0.7 mM) 0–1 min after ATP evoked a dramatic rise in [Ca2+]i in Na+-free media (Li+ substitution) compared to Na+-containing media; no differences between Na+- and Li+-based media were observed with vector-transfected cells. In the presence of physiological concentrations of extracellular Na+ and Ca2+, the ATP-evoked rise in [Ca2+]i declined more rapidly in CK1.4 cells compared to control cells, but then attained a long-lived plateau of elevated [Ca2+]i which eventually came to exceed the declining [Ca2+]i values in control cells. ATP elicited a transient acceleration of exchange-mediated Ba2+ influx, consistent with regulatory activation of the Na+/Ca2+ exchanger. The acceleration of Ba2+ influx was not observed in vector-transfected control cells, or in CK1.4 cells in the absence of intracellular Na+ or when the Ca2+ content of the intracellular stores had been reduced by prior treatment with ionomycin. The protein kinase C activator phorbol 12-myristate 13-acetate attenuated the exchange-mediated rise in [Ca2+]i under Na+-free conditions, but did not inhibit the ATP-evoked stimulation of Ba2+ influx. The effects of PMA are therefore not due to inhibition of exchange activity, but probably reflect the influence of protein kinase C on other Ca2+ homeostatic mechanisms. We conclude that exchange activity is accelerated during ATP-evoked Ca2+ release from intracellular stores through regulatory activation by increased [Ca2+]i. In the absence of extracellular Ca2+, the stimulation of exchange activity is short-lived and follows the time course of the [Ca2+]i transient; in the presence of extracellular Ca2+, we suggest that the exchanger remains activated for a longer period of time, thereby stabilizing and prolonging the plateau phase of store-dependent Ca2+ entry.  相似文献   

20.
Erythrosin b, a potent inhibitor of the Ca2+‐ATPases and the Ca2+‐release channel (BCC1) in mechanosensitive tissue of Bryonia dioica Jacq., effectively suppresses a tendril's reaction to touch, suggesting that Ca2+‐transporters are involved in signal transduction in this organ. The Ca2+‐ATPase located in the endoplasmic reticulum (ER) represents a multiregulated enzyme that is stimulated by calmodulin (CaM), KCl and lysophospholipids. Limited proteolysis of ER‐membranes by trypsin results in an irreversible activation of the Ca2+‐ATPase and loss of the CaM sensitivity, presumably through removal of an autoinhibitory domain where CaM binds. Mild trypsination mimics the effects of CaM on Vmax and the affinity for Ca2+ and ATP. Irrespective of a trypsin treatment, the enzyme can be additionally stimulated by KCl and lysolipids, indicating that the sites of interaction for these effectors are not located in the domain removed by the protease. CaM‐stimulated ATPase activity was purified from microsomal and ER fractions using a combination of CaM‐affinity and anion‐exchange chromatography. The isolated polypeptide was enzymatically active, showed a calcium‐dependent mobility‐shift in SDS‐PAGE from 109 kDa in the absence of Ca2+ to 104 kDa in the presence of 10 m M CaCl2 and could be radiolabeled with [35S]‐CaM. The characteristics of the purified enzyme remained closely similar to those of the ER‐bound Ca2+‐transporting activity, including the enzymatic data, CaM stimulation, and the sensitivity towards a range of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号