首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long‐term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4‐grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3‐grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4–7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N‐fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire‐resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light‐demanding grasses and forbs.  相似文献   

2.
Communities subject to stress, including those with low invasibility, may be dominated by exotic generalist species. African grasses are aggressive invasive species in Neotropical savannas, where their response to abiotic stress remains unknown. We assessed the role of waterlogging and canopy closure on the presence, abundance and reproductive tillering of African and native grasses in a Neotropical savanna in southeastern Brazil. We obtained abundance and reproductive tillering data of exotic (Melinis minutiflora, Melinis repens and Urochloa decumbens) and common native grasses in 20 sites. We also determined the groundwater depth, soil surface water potential and canopy cover at these sites. The grass species generally had a low frequency and performed poorly where soil remained waterlogged throughout the year, except for two native species. Most native species were exclusive to either well‐drained savannas or better drained wet grasslands. However, two species (Loudetiopsis chrysothrix and Trachypogon spicatus) occurred in both vegetation types. Two exotic species (M. minutiflora and M. repens) were less common but demonstrated reasonable performance in wet grasslands, possibly due to their root system plasticity. Furthermore, U. decumbens had a lower occurrence, density and reproductive tillering at these sites, but was successful at sites where the groundwater level was slightly deeper. Although the favourable water regime in the savannas increases their invasibility in general, resistance to invasion by African grasses may be greater at microsites with high canopy closure, where these species showed lower performance and did not affect the abundance of co‐occurring native grasses. In summary, the Brazilian savanna becomes more susceptible to the spread of African grasses when disturbances decrease canopy closure or lower rainfall associated with climate change reduces the average groundwater depth and consequently releases invasive species from soil waterlogging in grasslands.  相似文献   

3.
Davies KW 《Oecologia》2011,167(2):481-491
Exotic plants are generally considered a serious problem in wildlands around the globe. However, some argue that the impacts of exotic plants have been exaggerated and that biodiversity and other important plant community characteristics are commonly improved with invasion. Thus, disagreement exists among ecologists as to the relationship of exotic plants with biodiversity and native plant communities. A better understanding of the relationships between exotic plants and native plant communities is needed to improve funding allocation and legislation regarding exotic plants, and justify and prioritize invasion management. To evaluate these relationships, 65 shrub–bunchgrass plant communities with varying densities of an exotic annual grass, Taeniatherum caput-medusae (L.) Nevski (medusahead), were sampled across 160,000 ha in southeastern Oregon, United States. Environmental factors were generally not correlated with plant community characteristics when exotic annual grass density was included in models. Plant diversity and species richness were negatively correlated with exotic annual grass density. Exotic annual grass density explained 62% of the variation in plant diversity. All native plant functional groups, except annual forbs, exhibited a negative relationship with T. caput-medusae. The results of this study suggest that T. caput-medusae invasions probably have substantial negative impacts on biodiversity and native plant communities. The strength of the relationships between plant community characteristics and T. caput-medusae density suggests that some exotic plants are a major force of change in plant communities and subsequently threaten ecosystem functions and processes. However, experimental studies are needed to fully substantiate that annual grass invasion is the cause of these observed correlations.  相似文献   

4.
Question. Can strategic burning, targeting differing ecological characteristics of native and exotic species, facilitate restoration of native understorey in weed‐invaded temperate grassy eucalypt woodlands? Location. Gippsland Plains, eastern Victoria, Australia. Methods. In a replicated, 5‐year experimental trial, the effects of repeated spring or autumn burning were evaluated for native and exotic plants in a representative, degraded Eucalyptus tereticornis grassy woodland. Treatments aimed to reduce seed banks and modify establishment conditions of exotic annual grasses, and to exhaust vegetative reserves of exotic perennial grasses. Treatments were applied to three grassland patch types, dominated by the native grass Austrodanthonia caespitosa, ubiquitous exotic annuals, or the common exotic perennial grass Paspalum dilatatum. Results. The dominant native grass Austrodanthonia caespitosa and native forbs were resilient to repeated fires, and target exotic annuals and perennials were suppressed differentially by autumn and spring fires. Exotic annuals were also suppressed by drought, reducing the overall treatment effects but indicating important opportunities for restoration. The initially sparse exotic geophyte Romulea rosea increased in cover with fire and the impact of this species on native forbs requires further investigation. There was minimal increase in diversity of subsidiary natives with fire, probably owing to lack of propagules. Conclusions. While fire is often considered to increase ecosystem invasibility, our study showed that strategic use of fire, informed by the relative responses of available native and exotic taxa, is potentially an effective step towards restoration of weed‐invaded temperate eucalypt woodlands.  相似文献   

5.
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.  相似文献   

6.
Questions: (1) What is the recovery potential of soil seed banks of intact, average and degraded floodplain woodlands? (2) Will soil seed banks of different functional groups (native and exotic, dryland and wetland) display contrasting responses to site degradation? Location: Semi‐arid, seasonally flooded woodland of eastern Australia. Methods: Diversity, abundance and composition of soil seed banks were assessed using a glasshouse study. Surface soil samples were taken from a total of nine sites with three levels of degradation (intact, average, degraded) from three microsites (sub‐canopy, canopy edge, open). Results: A total of 26 662 individuals of 82 species germinated. Seed abundance increased tenfold from intact to degraded sites, but there was no effect on richness. Species composition of all functional groups varied significantly among degradation states. Seeds of native wetland and exotic dryland species were more abundant in degraded than in intact sites. However, the abundance of native dryland germinants did not differ among degradation classes and no seeds of exotic wetland species were observed. Richness of exotic dryland species was significantly higher in degraded sites. Conclusions: Increasing disturbance promoted seed banks of exotic but not native dryland species and native but not exotic wetland species. Unexpectedly, disturbance promoted the abundance of native seeds more than exotics, although this was driven by a single species. Our results suggest that the dryland phase of the floodplain community is more resilient to degradation than predicted.  相似文献   

7.
Savannas are defined based on vegetation structure, the central concept being a discontinuous tree cover in a continuous grass understorey. However, at the high‐rainfall end of the tropical savanna biome, where heavily wooded mesic savannas begin to structurally resemble forests, or where tropical forests are degraded such that they open out to structurally resemble savannas, vegetation structure alone may be inadequate to distinguish mesic savanna from forest. Additional knowledge of the functional differences between these ecosystems which contrast sharply in their evolutionary and ecological history is required. Specifically, we suggest that tropical mesic savannas are predominantly mixed tree–C4 grass systems defined by fire tolerance and shade intolerance of their species, while forests, from which C4 grasses are largely absent, have species that are mostly fire intolerant and shade tolerant. Using this framework, we identify a suite of morphological, physiological and life‐history traits that are likely to differ between tropical mesic savanna and forest species. We suggest that these traits can be used to distinguish between these ecosystems and thereby aid their appropriate management and conservation. We also suggest that many areas in South Asia classified as tropical dry forests, but characterized by fire‐resistant tree species in a C4 grass‐dominated understorey, would be better classified as mesic savannas requiring fire and light to maintain the unique mix of species that characterize them.  相似文献   

8.
Scattered trees in grass‐dominated ecosystems often act as islands of fertility with important influences on community structure. Despite the potential for these islands to be useful in restoring degraded rangelands, they can also serve as sites for the establishment of fast growing non‐native species. In California oak savannas, native perennial grasses are rare beneath isolated oaks and non‐native annual grasses dominate. To understand the mechanisms generating this pattern, and the potential for restoration of native grasses under oaks, we asked: what are the effects of the tree understory environment, the abundance of a dominant non‐native annual grass (Bromus diandrus), and soils beneath the trees on survival, growth, and reproduction of native perennial grass seedlings? We found oak canopies had a strong positive effect on survival of Stipa pulchra and Poa secunda. Growth and reproduction was enhanced by the canopy for Poa but negatively impacted for Stipa. We also found that Bromus suppressed growth and reproduction in Stipa and Poa, although less so for Stipa. These results suggest the oak understory may enhance survival of restored native perennial grass seedlings. The presence of exotic grasses can also suppress growth of native grasses, although only weakly for Stipa. The current limitation of native grasses to outside the canopy edge is potentially the result of interference from annual grasses under oaks, especially for short‐statured grasses like Poa. Therefore, control of non‐native annual grasses under tree canopies will enhance the establishment of S. pulchra and P. secunda when planted in California oak savannas.  相似文献   

9.
Understanding processes that underlie ecological resistance to weed invasion is critical for sustainable restoration of invaded plant communities. Experimental studies have demonstrated that invasive nitrophilic annuals can be controlled by addition of carbon to reduce soil nitrate concentrations, sometimes leading to enhanced establishment of native plants. However, effects of carbon supplements on soil nitrate are temporary, and the longer-term value of carbon supplementation as a restoration tool is dependent on the resistance of the re-established ecosystem to repeat invasion. We investigated whether re-established swards of the tussock grass Themeda australis (R.Br.) Stapf (a natural understorey dominant in mesic grassy woodlands of SE Australia) could suppress soil nitrate concentrations, and through this or other means, could impart ongoing resistance to exotic invasion in restored woodlands. In a remnant invaded by exotic annuals, we applied three plot treatments (carbon supplements, annual spring burns and untreated control) and two seed treatments (± Themeda seed) in a replicated, factorial design. Within 3 years, successful establishment of Themeda swards on burnt and carbon-supplemented plots was associated with a reduction in soil nitrate to levels comparable with non-invaded, Themeda-dominated reference sites in the region (<3 mg/kg), and significantly reduced exotic cover compared with unseeded plots. By contrast, on plots not seeded with Themeda, soil nitrate increased after cessation of carbon addition and exotic cover returned to levels comparable with untreated control plots, despite a high cover of other native perennial grasses. Few persistent effects of carbon supplements or spring burning on soil nutrients were evident 9–19 months after cessation of these treatments. Results suggest that Themeda is a keystone species that regulates nitrate cycling, thereby imparting ecological resistance to invasion by nitrophilic annuals.  相似文献   

10.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

11.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function.  相似文献   

12.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

13.
Expansion of the nature conservation estate in northeastern New South Wales, Australia, has captured weed‐infested timber plantations amid a mosaic of high conservation value lands. We adopted a state‐and‐transition approach to test the hypothesis that restoration barriers restrict the natural regeneration of native species in Eucalyptus grandis plantations infested by Lantana camara in Bongil Bongil National Park, New South Wales. Plantation tree thinning and weed control were applied in factorial combination at three sites (totaling to 4.5 ha). Topsoil chemistry responses to these interventions were attributable to the “ash bed” effect, with temporary increases in topsoil pHW and nitrate, particularly where canopy reduction was greatest. Other soil changes were minor, indicating that thinning and burning did not risk soil degradation. Plant species richness and functional group representation in the regenerating understorey were improved by the interventions. Regeneration of native potential canopy trees, understorey trees, shrubs and woody climbers, and perennial forbs all increased with canopy retention. Grass cover dominated the regeneration where canopy cover was less than 50%. In the absence of weed control, the cover of introduced shrubs increased with reduction in canopy cover, as did the rate of understorey regeneration generally. These responses indicate that thinning and weed control can reinstate succession, leading to structurally and compositionally diverse forest. Given the abundance of native woody regeneration under retained canopy, the lantana understorey was more important in inhibiting native regeneration. The experimental approach will promote efficient use of resources across the remaining 200 ha of low conservation value plantations in this national park.  相似文献   

14.
The introduction of exotic species and the extirpation of native species that occurred during the past two centuries have strongly modified the structure of most plant and animal assemblages across the globe. Such a biotic change is particularly marked in isolated environments such as islands or isolated lakes. Most studies reported drastic changes between before and after human disturbances, but the dynamics of change in assemblage structure through the invasion and extirpation processes are rarely reported. Here we measured the aquatic ecosystem degradation through exotic species introduction and native species extirpation experienced by Lake Erhai (China) during the last 50 years using structural, functional and taxonomic distinctness biodiversity indices. Structural diversity (species richness) did not varied monotonically along the temporal gradient, due to an opposite trend between exotic species increase and a concomitant decline of native species richness. Functional diversity displayed unclear ascending trends driven by the introduction of exotic species having distinct functional traits than natives. Taxonomic distinctness indices exhibited an increase of the average taxonomic distinctness (Δ+), but a decrease of the variation in taxonomic distinctness (Λ+) through time. Structural, functional and distinctness indices providing complementary information on ecosystem degradation, we here proposed a new multifaceted degradation index integrating these three facets of biodiversity. Such an index provided an accurate representation of the faunistic changes experienced by Lake Erhai and might constitute a comprehensive way to measure ecosystem degradation through exotic fish species introductions and native fish species extirpations.  相似文献   

15.
Foliage Projective Cover of the overstorey (canopy) of a‘climax’community appears to reach an equilibrium value determined largely by the prevailing climate. Overstorey FPC decreases in‘climax’communities in a graded series from humid to arid regions. Understorey cover (of all strata below the canopy) in‘climax’communities attains a balance with overstorey FPC. Disturbance (gaps, microhabitats, fire, overgrazing, invasion of woody weeds, etc.) may reduce the overstorey cover which will be compensated by an increase in understorey cover. Secondary succession back to the‘climax’structure will follow a path maintaining an inverse linear relationship between understorey cover and overstorey cover. At the same time, species diversity appears to decrease as overstorey cover increases.  相似文献   

16.
Microsites are created by abiotic and biotic features of the landscape and may provide essential habitats for the persistence of biota. Forest canopies and understorey plants may moderate wind and solar radiation to create microclimatic conditions that differ considerably from regional climates. Skirt-forming plants, where senescent leaves create hut-like cavities around the stem, create microsites that are sheltered from ambient conditions and extreme weather events, constituting potential refuges for wildlife. We investigate day and night temperatures and humidity for four locations (grass tree cavities, soil, 20 cm above-ground, 1 m above-ground) in a South Australian forest with relatively open canopy of stringybark eucalypts (Eucalyptus baxteri, E. obliqua) and an understorey of skirt-forming grass trees (Xanthorrhoea semiplana) at 5, 10, 20, and 40 m from the forest edge. We also measured the percentage of canopy and understorey covers. Generally, temperature and humidity differed significantly between more sheltered (grass tree cavities, soil) and open-air microsites, with the former being cooler during the day and warmer and more humid during the night. Furthermore, our results suggest that canopy cover tends to decrease, and understorey cover tends to increase, the temperature of microsites. Distance to the edge was not significantly related to temperature for any microsite, suggesting that the edge effect did not extend beyond 10 m from the edge. Overall, grass trees influenced microclimatic conditions by forming a dense understorey and providing cavities that are relatively insulated. The capacity of grass tree cavities to buffer external conditions increased linearly with ambient temperatures, by 0.46°C per degree increase in maximum and 0.25°C per degree decrease in minimum temperatures, potentially offsetting climate warming and enabling persistence of fauna within their thermal limits. These climate moderation properties will make grass trees increasingly important refuges as extreme weather events become more common under anthropogenic climate change.  相似文献   

17.
Abstract. Reclamation of former, degraded forest lands occupied by Imperata cylindrica is one of the crucial environmental and forestry issues in the humid tropics, notably Southeast Asia. We suggest that it is possible to gradually restore the original natural forest cover with the help of a sacrifice fallow crop of fast-growing exotic tree species. Recently, a set of suitable fast-growing plantation tree species has been identified and stand establishment methods developed for this purpose. We assessed the regeneration of natural vegetation in stands of different plantation tree species and evaluated the ecological impact of species composition in the plantation understorey. PCA ordination, regression analysis and analysis of covariance were applied at different stages of the study. We found a marked vegetational resemblance between stands dominated by Acacia mangium: they had the highest number of indigenous trees in their understorey, whereas stands of other plantation trees supported more diverse grass and herb vegetation. A high proportion of evergreen woody vegetation reduces the risk of fire and grass competition and enhances secondary succession towards natural forest.  相似文献   

18.
A detailed biometrical study of the exotic understorey invader Prunus serotina (Ehrh.) was carried out in a mixed coniferous forest stand in northern Belgium. Based on detailed destructive measurements of eight selected model trees, allometric relations of tree height, crown projected area, woody and leaf dry mass and leaf area on tree diameter at breast height (DBH) were derived. The scaling-up procedure from the tree to the stand level was done using the frequency distribution of DBH obtained at the selected experimental plot. The vertical and radial distributions of the tree foliage were estimated by the “cloud” technique. The vertical profile of leaf area showed a bimodal distribution pattern with maxima at heights of 4 and 6 m above the ground. The leaf area index (LAI) of the understorey Prunus serotina as estimated by the described up-scaling procedure (5.1) was significantly higher than the LAI (2.6) as measured by a plant canopy analyser and was also significantly higher than the LAI of the overstorey species Scots pine (1.5–3.0). The LAI of a neighbouring Rhododendron understorey reached only 1.25. This study emphasises the importance of an exotic understorey species in the total leaf area of mixed coniferous forests which might have important implications for the energy and mass exchanges of the entire forest.  相似文献   

19.
Andropogon gayanus (gamba grass) is an introduced pasture grass that threatens Australia's tropical savannas by modifying fire regimes and species composition. To understand the establishment requirements of A. gayanus, we undertook a field experiment to determine the effect of canopy cover and ground layer disturbance on seedling emergence and survival. Seed was sown under three canopy treatments (undisturbed, artificial canopy gap, and natural canopy gap) and under three ground layer treatments (Control, Vegetation disturbed, and Soil disturbed). Results have shown that A. gayanus can establish and survive regardless of canopy cover or ground disturbance, although such site disturbances will increase establishment success. Disturbance of both the overstorey canopy and the ground layer increased A. gayanus emergence, whereas seedling survival to 12 mo after seed sowing was affected by ground layer disturbance alone. Disturbance of the canopy increased light transmission, which may have promoted germination. Ground layer disturbance may also have increased light transmission and suitable sites for establishment, and reduced competition for resources, such as water and nutrients. The ability of A. gayanus to spread along disturbed areas, establish in relatively undisturbed savannas, and resprout after fire within 6 mo after seedling emergence suggests that this species will become increasingly widespread in Australia's tropical savannas. Its control is urgently required.  相似文献   

20.
To test the theory that successful biocontrol of invasive hawkweeds (Pilosella and Hieracium spp.) would increase bare ground and accelerate erosion, small areas of hawkweed were suppressed with herbicide in a nine-year study. An increase in bare ground resulting from the treatments was maintained throughout. No new invasive species were recorded, and apart from a temporary increase in a perennial grass, no existing exotic species moved into the gaps created. Indigenous plants did not respond either, although at one site where mat plants were prevalent, treatments slowed their decline. As recovery of existing vegetation was minimal, it is likely that invasion of hawkweed is a consequence of degradation rather than the reverse, and if biocontrol is successful, degraded grasslands may suffer further damage, especially in areas that are grazed. The effect may be ameliorated since biocontrol agents are predicted to perform less well under conditions of low fertility and low moisture. Our results emphasize the importance of pre-release ecological studies to clarify the role of invasive plants proposed for biocontrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号