首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Berberine is a substituted dibenzo[a,g]quinolizin-7-ium derivative whose modest antibiotic activity is derived from its disruptive impact on the function of the essential bacterial cell division protein FtsZ. The present study reveals that the presence of a biphenyl substituent at either the 2- or 12-position of structurally-related dibenzo[a,g]quinolizin-7-ium derivatives significantly enhances antibacterial potency versus Staphylococcus aureus and Enterococcus faecalis. Studies with purified S. aureus FtsZ demonstrate that both 2- and 12-biphenyl dibenzo[a,g]quinolizin-7-ium derivatives act as enhancers of FtsZ self-polymerization.  相似文献   

2.
Filamenting temperature-sensitive protein Z (FtsZ), an essential cell division protein, is a promising target for the drug discovery of new-generation antibacterial agents against various bacterial pathogens. As a part of SAR studies on benzimidazoles, we have synthesized a library of 376 novel 2,5,6-trisubstituted benzimidazoles, bearing ether or thioether linkage at the 6-position. In a preliminary HTP screening against Mtb H37Rv, 108 compounds were identified as hits at a cut off concentration of 5 μg/mL. Among those hits, 10 compounds exhibited MIC values in the range of 0.63–12.5 μg/mL. Light scattering assay and TEM analysis with the most potent compound 5a clearly indicate that its molecular target is Mtb-FtsZ. Also, the Kd of 5a with Mtb-FtsZ was determined to be 1.32 μM.  相似文献   

3.
Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3′-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.  相似文献   

4.
Mycobacterium tuberculosis is responsible for more than 1.6 million deaths each year. One potential antibacterial target in M. tuberculosis is filamentous temperature sensitive protein Z (FtsZ), which is the bacterial homologue of mammalian tubulin, a validated cancer target. M. tuberculosis FtsZ function is essential, with its inhibition leading to arrest of cell division, elongation of the bacterial cell and eventual cell death. However, the development of potent inhibitors against FtsZ has been a challenge owing to the lack of structural information. Here we report multiple crystal structures of M. tuberculosis FtsZ in complex with a coumarin analogue. The 4-hydroxycoumarin binds exclusively to two novel cryptic pockets in nucleotide-free FtsZ, but not to the binary FtsZ-GTP or GDP complexes. Our findings provide a detailed understanding of the molecular basis for cryptic pocket formation, controlled by the conformational flexibility of the H7 helix, and thus reveal an important structural and mechanistic rationale for coumarin antibacterial activity.  相似文献   

5.
FtsZ is an essential protein for bacterial cell division, and an attractive and underexploited novel antibacterial target protein. Screening of Indonesian plants revealed the inhibitory activity of the methanol extract of Glycyrrhiza glabra on the Bacillus subtilis FtsZ (BsFtsZ) GTPase, and further bioassay-guided fractionation of the active methanol extract led to the isolation of seven known polyketides (1–7). Among them, gancaonin I (1), glycyrin (3), and isolicoflavanol (5) exhibited anti-BsFtsZ GTPase activities, at levels comparable to that of the synthetic FtsZ inhibitor, Zantrin Z3. Enzymatic assays using a BsFtsZ Val307R mutant protein and in silico simulations suggested that 1, 3, and 5 bind to the cleft on BsFtsZ, as in the case of the previously reported uncompetitive FtsZ inhibitor, PC190723, and thereby display their significant anti-BsFtsZ inhibitory activities. Furthermore, 1 also showed significant inhibitory activity against B. subtilis, with a MIC value of 5 μM. The present study provides new insights into the naturally occurring B. subtilis growth inhibitors.  相似文献   

6.
The increasing incidence of multidrug resistant bacterial infection renders an urgent need for the development of new antibiotics. To develop small molecules disturbing FtsZ activity has been recognized as promising approach to search for antibacterial of high potency systematically. Herein, a series of novel quinolinium derivatives were synthesized and their antibacterial activities were investigated. The compounds show strong antibacterial activities against different bacteria strains including MRSA, VRE and NDM-1 Escherichia coli. Among these derivatives, a compound bearing a 4-fluorophenyl group (A2) exhibited a superior antibacterial activity and its MICs to the drug-resistant strains are found lower than those of methicillin and vancomycin. The biological results suggest that these quinolinium derivatives can disrupt the GTPase activity and dynamic assembly of FtsZ, and thus inhibit bacterial cell division and then cause bacterial cell death. These compounds deserve further evaluation for the development of new antibacterial agents targeting FtsZ.  相似文献   

7.
A novel series of 5-methyl-2-phenylphenanthridium derivatives were displayed outstanding activity against a panel of antibiotic-sensitive and -resistant bacteria strains compared with their precursor sanguinarine, ciprofloxacin and oxacillin sodium. Compounds 7?l, 7m and 7n were found to display the most effective activity against five sensitive strains (0.06–2?μg/mL) and three resistant strains (0.25–4?μg/mL). The kinetic profiles indicated that compound 7l possessed the strongest bactericidal effect on S. aureus ATCC25923, with the MBC value of 16?μg/mL. The cell morphology and the FtsZ polymerization assays indicated that these compounds inhibited the bacterial proliferation by interfering the function of bacterial FtsZ. The SARs showed that all the 4-methyl-substituted 5-methyl-2-phenylphenanthridium subseries could be further investigated as the FtsZ-targeting antibacterial agents.  相似文献   

8.
Antibiotic resistance has prompted efforts to discover antibiotics with novel mechanisms of action. FtsZ is an essential protein for bacterial cell division, and has been viewed as an attractive target for the development of new antibiotics. Sanguinarine is a benzophenanthridine alkaloid that prevents cytokinesis in bacteria by inhibiting FtsZ self-assembly. In this study, a series of 5-methylbenzo[c]phenanthridinium derivatives were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis. The data indicate that the presence of a 1- or 12-phenyl substituent on 2,3,8,9-tetramethoxy-5-methylbenzo[c]phenanthridinium chloride significantly enhances antibacterial activity relative to the parent compound or sanguinarine.  相似文献   

9.
The emergence of bacterial resistance to antibiotics is a major health problem and, therefore, it is critical to develop new antibiotics with novel modes of action. FtsZ, a tubulin-like GTPase, plays an essential role in bacterial cell division, and its homologs are present in almost all eubacteria and archaea. During cell division, FtsZ forms polymers in the presence of GTP that recruit other division proteins to make the cell division apparatus. Therefore, inhibition of FtsZ polymerization will prevent cells from dividing, leading to cell death. Using a fluorescent FtsZ polymerization assay, the screening of >100,000 extracts of microbial fermentation broths and plants followed by fractionation led to the identification of viriditoxin, which blocked FtsZ polymerization with an IC50 of 8.2 microg/ml and concomitant GTPase inhibition with an IC50 of 7.0 microg/ml. That the mode of antibacterial action of viriditoxin is via inhibition of FtsZ was confirmed by the observation of its effects on cell morphology, macromolecular synthesis, DNA-damage response, and increased minimum inhibitory concentration as a result of an increase in the expression of the FtsZ protein. Viriditoxin exhibited broad-spectrum antibacterial activity against clinically relevant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, without affecting the viability of eukaryotic cells.  相似文献   

10.
The emergence of multidrug-resistant bacteria has created an urgent need for antibiotics with a novel mechanism of action. The bacterial cell division protein FtsZ is an attractive target for the development of novel antibiotics. The benzo[c]phenanthridinium sanguinarine and the dibenzo[a,g]quinolizin-7-ium berberine are two structurally similar plant alkaloids that alter FtsZ function. The presence of a hydrophobic functionality at either the 1-position of 5-methylbenzo[c]phenanthridinium derivatives or the 2-position of dibenzo[a,g]quinolizin-7-ium derivatives is associated with significantly enhanced antibacterial activity. 3-Phenylisoquinoline represents a subunit within the ring-systems of both of these alkaloids. Several 3-phenylisoquinolines and 3-phenylisoquinolinium derivatives have been synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis, including multidrug-resistant strains of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). A number of derivatives were found to have activity against both MRSA and VRE. The binding of select compounds to S. aureus FtsZ (SaFtsZ) was demonstrated and characterized using fluorescence spectroscopy. In addition, the compounds were shown to act as stabilizers of SaFtsZ polymers and concomitant inhibitors of SaFtsZ GTPase activity. Toxicological assessment of select compounds revealed minimal cross-reaction mammalian β-tubulin as well as little or no human cytotoxicity.  相似文献   

11.
The continuous emergence and rapid spread of a multidrug-resistant strain of bacterial pathogens have demanded the discovery and development of new antibacterial agents. A highly conserved prokaryotic cell division protein FtsZ is considered as a promising target by inhibiting bacterial cytokinesis. Inhibition of FtsZ assembly restrains the cell-division complex known as divisome, which results in filamentation, leading to lysis of the cell. This review focuses on details relating to the structure, function, and influence of FtsZ in bacterial cytokinesis. It also summarizes on the recent perspective of the known natural and synthetic inhibitors directly acting on FtsZ protein, with prominent antibacterial activities. A series of benzamides, trisubstituted benzimidazoles, isoquinolene, guanine nucleotides, zantrins, carbonylpyridine, 4 and 5-Substituted 1-phenyl naphthalenes, sulindac, vanillin analogues were studied here and recognized as FtsZ inhibitors that act either by disturbing FtsZ polymerization and/or GTPase activity. Doxorubicin, from a U.S. FDA, approved drug library displayed strong interaction with FtsZ. Several of the molecules discussed, include the prodrugs of benzamide based compound PC190723 (TXA-709 and TXA707). These molecules have exhibited the most prominent antibacterial activity against several strains of Staphylococcus aureus with minimal toxicity and good pharmacokinetics properties. The evidence of research reports and patent documentations on FtsZ protein has disclosed distinct support in the field of antibacterial drug discovery. The pressing need and interest shall facilitate the discovery of novel clinical molecules targeting FtsZ in the upcoming days.  相似文献   

12.
The spread of infections caused by multidrug-resistant (MDR) pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA), has created a need for new antibiotics with novel mechanisms of action. The bacterial division protein FtsZ has been identified as a novel drug target that can be exploited clinically. As part of an ongoing effort to develop FtsZ-targeting antibacterial agents, we describe herein the design, synthesis and bioactivity of six series of novel 1,3,4-oxadiazol-2-one-containing, 1,2,4-triazol-3-one-containing and pyrazolin-5-one-containing benzamide derivatives. Among them, compound A14 was found to be the most potent antibacterial agent, much better than clinical drugs such as ciprofloxacin, linezolid and erythromycin against all the tested gram-positive strains, particularly methicillin-resistant, penicillin-resistant and clinical isolated S. aureus. Subsequent studies on biological activities and docking analyses proved that A14 functioned as an effective compound targeting FtsZ. Preliminary SAR indicated a general direction for further optimization of these novel analogues. Taken together, this research provides a promising chemotype for developing newer FtsZ-targeting bactericidal agents.  相似文献   

13.
Bacterial cell division occurs in conjunction with the formation of a cytokinetic Z-ring structure comprised of FtsZ subunits. Agents that disrupt Z-ring formation have the potential, through this unique mechanism, to be effective against several of the newly emerging multidrug-resistant strains of infectious bacteria. Several 1-phenylbenzo[c]phenanthridines exhibit notable antibacterial activity. Based upon their structural similarity to these compounds, a distinct series of substituted 1,6-diphenylnaphthalenes were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis. In addition, the effect of select 1,6-diphenylnaphthalenes on the polymerization dynamics of S. aureus FtsZ and mammalian β-tubulin was also assessed. The presence of a basic functional group or a quaternary ammonium substituent on the 6-phenylnaphthalene was required for significant antibacterial activity. Diphenylnaphthalene derivatives that were active as antibiotics, did exert a pronounced effect on bacterial FtsZ polymerization and do not appear to cross-react with mammalian tubulin to any significant degree.  相似文献   

14.
Novel series of 3-substituted 2,6-difluorobenzamide derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their in vitro antibacterial activity against various phenotype of Gram-positive and Gram-negative bacteria, and their cell division inhibitory activity against three representative strains. As a result, 3-chloroalkoxy derivative 7, 3-bromoalkoxy derivative 12 and 3-alkyloxy derivative 17 were found to exhibit the best antibacterial activity against Bacillus subtilis with MICs of 0.25–1 μg/mL, and good activity (MIC < 10 μg/mL) against both susceptible and resistant Staphylococcus aureus. Additionally, all the three compounds displayed potent cell division inhibitory activity with MIC values of below 1 μg/mL against Bacillus subtilis and Staphylococcus aureus.  相似文献   

15.
Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.  相似文献   

16.
Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA.  相似文献   

17.
Boberek JM  Stach J  Good L 《PloS one》2010,5(10):e13745

Background

Berberine is a plant alkaloid that is widely used as an anti-infective in traditional medicine. Escherichia coli exposed to berberine form filaments, suggesting an antibacterial mechanism that involves inhibition of cell division. Berberine is a DNA ligand and may induce filamentation through induction of the SOS response. Also, there is biochemical evidence for berberine inhibition of the cell division protein FtsZ. Here we aimed to assess possible berberine mechanism(s) of action in growing bacteria using genetics tools.

Methodology/Principal Findings

First, we tested whether berberine inhibits bacterial growth through DNA damage and induction of the SOS response. The SOS response induced by berberine was much lower compared to that induced by mitomycin C in an SOS response reporter strain. Also, cell filamentation was observed in an SOS-negative E. coli strain. To test whether berberine inhibits FtsZ, we assessed its effects on formation of the cell division Z-rings, and observed a dramatic reduction in Z-rings in the presence of berberine. We next used two different strategies for RNA silencing of ftsZ and both resulted in sensitisation of bacteria to berberine, visible as a drop in the Minimum Inhibitory Concentration (MIC). Furthermore, Fractional Inhibitory Concentration Indices (FICIs) showed a high level of synergy between ftsZ silencing and berberine treatment (FICI values of 0.23 and 0.25 for peptide nucleic acid- and expressed antisense RNA-based silencing of ftsZ, respectively). Finally, over-expression of ftsZ led to a mild rescue effect in berberine-treated cells.

Conclusions

The results argue against DNA binding as the primary mechanism of action of berberine and support the hypothesis that its antibacterial properties are due to inhibition of the cell division protein FtsZ. In addition, the genetic approach used here provides a means to rapidly test the activity of other putative FtsZ inhibitors.  相似文献   

18.
The precise spatial and temporal control of bacterial cell division is achieved through the balanced actions of factors that inhibit assembly of the tubulin-like protein FtsZ at aberrant subcellular locations or promote its assembly at the future sites of division. In Bacillus subtilis, the membrane anchored cell division protein EzrA, interacts directly with FtsZ to prevent aberrant FtsZ assembly at cell poles and contributes to the inherently dynamic nature of the cytokinetic ring. Recent work suggests EzrA also serves as a scaffolding protein to coordinate lateral growth with cell wall biosynthesis through interactions with a host of proteins, a finding consistent with EzrA''s four extensive coiled-coil domains. In a previous study we identified a conserved patch of residues near EzrA''s C-terminus (the QNR motif) that are critical for maintenance of a dynamic cytokinetic ring, but dispensable for EzrA-mediated inhibition of FtsZ assembly at cell poles. In an extension of this work, here we report that EzrA''s two C-terminal coiled-coils function in concert with the QNR motif to mediate interactions with FtsZ and maintain the dynamic nature of the cytokinetic ring. In contrast, EzrA''s two N-terminal coiled-coils are dispensable for interaction between EzrA and FtsZ in vitro and in vivo, but required for EzrA mediated inhibition of FtsZ assembly at cell poles. Finally, chimeric analysis indicates that EzrA''s transmembrane anchor plays a generic role: concentrating EzrA at the plasma membrane where presumably it can most effectively modulate FtsZ assembly.  相似文献   

19.
FtsZ assembly at the midcell division site in the form of a Z-ring is crucial for initiation of the cell division process in eubacteria. It is largely unknown how this process is regulated in the human pathogen Mycobacterium tuberculosis. Here we show that the expression of clpX was upregulated upon macrophage infection and exposure to cephalexin antibiotic, the conditions where FtsZ-ring assembly is delayed. Independently, we show using pull-down, solid-phase binding, bacterial two-hybrid and mycobacterial protein fragment complementation assays, that M. tuberculosis FtsZ interacts with ClpX, the substrate recognition domain of the ClpXP protease. Incubation of FtsZ with ClpX increased the critical concentration of GTP-dependent polymerization of FtsZ. Immunoblotting revealed that the intracellular ratio of ClpX to FtsZ in wild type M. tuberculosis is approximately 1∶2. Overproduction of ClpX increased cell length and modulated the localization of FtsZ at midcell sites; however, intracellular FtsZ levels were unaffected. A ClpX-CFP fusion protein localized to the cell poles and midcell sites and colocalized with the FtsZ-YFP protein. ClpX also interacted with FtsZ mutant proteins defective for binding to and hydrolyzing GTP and possibly for interactions with other proteins. Taken together, our results suggest that M. tuberculosis ClpX interacts stoichiometrically with FtsZ protomers, independent of its nucleotide-bound state and negatively regulates FtsZ activities, hence cell division.  相似文献   

20.
3-Methoxybenzamide (3-MBA) derivatives have been identified as novel class of potent antibacterial agents targeting the bacterial cell division protein FtsZ. As one of isosteres for the amide group, 1,2,3-triazole can mimic the topological and electronic features of the amide, which has gained increasing attention in drug discovery. Based on these considerations, we prepared a series of 1H-1,2,3-triazole-containing 3-MBA analogues via isosteric replacement of the terminal amide with triazole, which had increased antibacterial activity. This study demonstrated the possibility of developing the 1H-1,2,3-triazole group as a terminal amide-mimetic element which was capable of both keeping and modulating amide-related bioactivity. Surprisingly, a different action mode of these new 1H-1,2,3-triazole-containing analogues was observed, which could open new opportunities for the development of antibacterial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号