首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

CASKIN2 is a neuronal signaling scaffolding protein comprised of multiple ankyrin repeats, two SAM domains, and one SH3 domain. The CASKIN2 SH3 domain for an NMR structural determination because its peptide-binding cleft appeared to deviate from the repertoire of aromatic enriched amino acids that typically bind polyproline-rich sequences.

Results

The structure demonstrated that two non-canonical basic amino acids (K290/R319) in the binding cleft were accommodated well in the SH3 fold. An K290Y/R319W double mutant restoring the typical aromatic amino acids found in the binding cleft resulted in a 20 °C relative increase in the thermal stability. Considering the reduced stability, we speculated that the CASKIN2 SH3 could be a nonfunctional remnant in this scaffolding protein.

Conclusions

While the NMR structure demonstrates that the CASKIN2 SH3 domain is folded, its cleft has suffered two substitutions that prevent it from binding typical polyproline ligands. This observation led us to additionally survey and describe other SH3 domains in the Protein Data Bank that may have similarly lost their ability to promote protein-protein interactions.
  相似文献   

2.

Introduction

Severe acute malnutrition (SAM) is a major cause of child mortality worldwide, however the pathogenesis of SAM remains poorly understood. Recent studies have uncovered an altered gut microbiota composition in children with SAM, suggesting a role for microbes in the pathogenesis of malnutrition.

Objectives

To elucidate the metabolic consequences of SAM and whether these changes are associated with changes in gut microbiota composition.

Methods

We applied an untargeted multi-platform metabolomics approach [gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS)] to stool and plasma samples from 47 Nigerian children with SAM and 11 control children. The composition of the stool microbiota was assessed by 16S rRNA gene sequencing.

Results

The plasma metabolome discriminated children with SAM from controls, while no significant differences were observed in the microbial or small molecule composition of stool. The abundance of 585 features in plasma were significantly altered in malnourished children (Wilcoxon test, FDR corrected P?<?0.1), representing approximately 15% of the metabolome. Consistent with previous studies, children with SAM exhibited a marked reduction in amino acids/dipeptides and phospholipids, and an increase in acylcarnitines. We also identified numerous metabolic perturbations which have not been reported previously, including increased disaccharides, truncated fibrinopeptides, angiotensin I, dihydroxybutyrate, lactate, and heme, and decreased bioactive lipids belonging to the eicosanoid and docosanoid family.

Conclusion

Our findings provide a deeper understanding of the metabolic consequences of malnutrition. Further research is required to determine if specific metabolites may guide improved management, and/or act as novel biomarkers for assessing response to treatment.
  相似文献   

3.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

4.

Introduction

Persons living with HIV (PLWH) are at higher risk for cardiovascular disease (CVD) events than uninfected persons. Current risk-stratification methods to define PLWH at highest risk for CVD events are lacking.

Methods

Using tandem flow injection mass spectrometry, we quantified plasma levels of 60 metabolites in 24 matched pairs of PLWH [1:1 with and without known coronary artery disease (CAD)]. Metabolite levels were reduced to interpretable factors using principal components analysis.

Results

Factors derived from short-chain dicarboxylacylcarnitines (SCDA) (p?=?0.08) and glutamine/valine (p?=?0.003) were elevated in CAD cases compared to controls.

Conclusion

SCDAs and glutamine/valine may be valuable markers of cardiovascular risk among persons living with HIV in the future, pending validation in larger cohorts.
  相似文献   

5.

Background

High-throughput technologies, such as DNA microarray, have significantly advanced biological and biomedical research by enabling researchers to carry out genome-wide screens. One critical task in analyzing genome-wide datasets is to control the false discovery rate (FDR) so that the proportion of false positive features among those called significant is restrained. Recently a number of FDR control methods have been proposed and widely practiced, such as the Benjamini-Hochberg approach, the Storey approach and Significant Analysis of Microarrays (SAM).

Methods

This paper presents a straight-forward yet powerful FDR control method termed miFDR, which aims to minimize FDR when calling a fixed number of significant features. We theoretically proved that the strategy used by miFDR is able to find the optimal number of significant features when the desired FDR is fixed.

Results

We compared miFDR with the BH approach, the Storey approach and SAM on both simulated datasets and public DNA microarray datasets. The results demonstrated that miFDR outperforms others by identifying more significant features under the same FDR cut-offs. Literature search showed that many genes called only by miFDR are indeed relevant to the underlying biology of interest.

Conclusions

FDR has been widely applied to analyzing high-throughput datasets allowed for rapid discoveries. Under the same FDR threshold, miFDR is capable to identify more significant features than its competitors at a compatible level of complexity. Therefore, it can potentially generate great impacts on biological and biomedical research.

Availability

If interested, please contact the authors for getting miFDR.
  相似文献   

6.

Background

The etiology of more than half of all patients with X-linked intellectual disability remains elusive, despite array-based comparative genomic hybridization, whole exome or genome sequencing. Since short read massive parallel sequencing approaches do not allow the detection of larger tandem repeat expansions, we hypothesized that such expansions could be a hidden cause of X-linked intellectual disability.

Methods

We selectively captured over 1800 tandem repeats on the X chromosome and characterized them by long read single molecule sequencing in 3 families with idiopathic X-linked intellectual disability.

Results

In male DNA samples, full tandem repeat length sequences were obtained for 88–93% of the targets and up to 99.6% of the repeats with a moderate guanine-cytosine content. Read length and analysis pipeline allow to detect cases of >?900?bp tandem repeat expansion. In one family, one repeat expansion co-occurs with down-regulation of the neighboring MIR222 gene. This gene has previously been implicated in intellectual disability and is apparently linked to FMR1 and NEFH overexpression associated with neurological disorders.

Conclusions

This study demonstrates the power of single molecule sequencing to measure tandem repeat lengths and detect expansions, and suggests that tandem repeat mutations may be a hidden cause of X-linked intellectual disability.
  相似文献   

7.

Objective

To increase the reporter repertoire of the yeast three-hybrid system and introduce the option of negative selection.

Results

Two new versions of the yeast three-hybrid system were made by modifying the MS2 coat RNA-binding protein and fusing it to the Gal4 DNA-binding protein. This allows the use of Gal4 inducible reporters to measure RNA–protein interactions. We introduced two mutations, V29I and N55K into the tandem MS2 dimer and an 11 amino acid deletion to increase RNA–protein affinity and inhibit capsid formation. Introduction of these constructs into the yeast strains MaV204K and PJ69-2A (which contain more reporters than the conventional yeast three-hybrid strains L40-coat and YBZ-1) allows RNA–protein binding interactions with a wide range of affinities to be detected using histidine auxotrophy, and negative selection with 5-fluoroorotic acid.

Conclusion

This yeast three-hybrid system has advantages over previous versions as demonstrated by the increased dynamic range of detectable binding interactions using yeast survival assays and colony forming assays with multiple reporters using known RNA–protein interactions.
  相似文献   

8.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

9.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

10.

Introduction

It is difficult to elucidate the metabolic and regulatory factors causing lipidome perturbations.

Objectives

This work simplifies this process.

Methods

A method has been developed to query an online holistic lipid metabolic network (of 7923 metabolites) to extract the pathways that connect the input list of lipids.

Results

The output enables pathway visualisation and the querying of other databases to identify potential regulators. When used to a study a plasma lipidome dataset of polycystic ovary syndrome, 14 enzymes were identified, of which 3 are linked to ELAVL1—an mRNA stabiliser.

Conclusion

This method provides a simplified approach to identifying potential regulators causing lipid-profile perturbations.
  相似文献   

11.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

12.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

13.

Background

Charge states of tandem mass spectra from low-resolution collision induced dissociation can not be determined by mass spectrometry. As a result, such spectra with multiple charges are usually searched multiple times by assuming each possible charge state. Not only does this strategy increase the overall database search time, but also yields more false positives. Hence, it is advantageous to determine charge states of such spectra before database search.

Results

We propose a new approach capable of determining the charge states of low-resolution tandem mass spectra. Four novel and discriminant features are introduced to describe tandem mass spectra and used in Gaussian mixture model to distinguish doubly and triply charged peptides. By testing on three independent datasets with known validity, the results have shown that this method can assign charge states to low-resolution tandem mass spectra more accurately than existing methods.

Conclusions

The proposed method can be used to improve the speed and reliability of peptide identification.
  相似文献   

14.

Introduction

Swine dysentery caused by Brachyspira hyodysenteriae is a production limiting disease in pig farming. Currently antimicrobial therapy is the only treatment and control method available.

Objective

The aim of this study was to characterize the metabolic response of porcine colon explants to infection by B. hyodysenteriae.

Methods

Porcine colon explants exposed to B. hyodysenteriae were analyzed for histopathological, metabolic and pro-inflammatory gene expression changes.

Results

Significant epithelial necrosis, increased levels of l-citrulline and IL-1α were observed on explants infected with B. hyodysenteriae.

Conclusions

The spirochete induces necrosis in vitro likely through an inflammatory process mediated by IL-1α and NO.
  相似文献   

15.

Background

There are several reports on anatomical differences of the meniscus. However, there are only a few reports on abnormalities in both menisci and anatomical differences in anterior cruciate ligament insertions.

Case presentation

This is a case report of a 36-year-old Hispanic man presenting symptoms, including knee pain, locking, and effusion, with an anatomical abnormality of the menisci corresponding to the fusion of the posterior horns of the menisci in tandem with the insertion of the posterior meniscus fibers in the anterior cruciate ligament.

Conclusions

This is the first study describing a meniscus anatomical variant with isolated posterior junction of the posterior horn with an anomalous insertion to the anterior cruciate ligament. The recognition of meniscus variants is important as they can be misinterpreted for more significant pathology on magnetic resonance images.
  相似文献   

16.

Introduction

Quantification of tetrahydrofolates (THFs), important metabolites in the Wood–Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen.

Objective

To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors.

Methods

Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC–MS/MS was used for quantification.

Results

Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP.

Conclusion

Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.
  相似文献   

17.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

18.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

19.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

20.

Introduction

Tandem mass spectrometry (MS/MS) has been widely used for identifying metabolites in many areas. However, computationally identifying metabolites from MS/MS data is challenging due to the unknown of fragmentation rules, which determine the precedence of chemical bond dissociation. Although this problem has been tackled by different ways, the lack of computational tools to flexibly represent adjacent structures of chemical bonds is still a long-term bottleneck for studying fragmentation rules.

Objectives

This study aimed to develop computational methods for investigating fragmentation rules by analyzing annotated MS/MS data.

Methods

We implemented a computational platform, MIDAS-G, for investigating fragmentation rules. MIDAS-G processes a metabolite as a simple graph and uses graph grammars to recognize specific chemical bonds and their adjacent structures. We can apply MIDAS-G to investigate fragmentation rules by adjusting bond weights in the scoring model of the metabolite identification tool and comparing metabolite identification performances.

Results

We used MIDAS-G to investigate four bond types on real annotated MS/MS data in experiments. The experimental results matched data collected from wet labs and literature. The effectiveness of MIDAS-G was confirmed.

Conclusion

We developed a computational platform for investigating fragmentation rules of tandem mass spectrometry. This platform is freely available for download.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号