首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Background  

Norrin is a potent Wnt pathway ligand. Aberrant activation of this signaling pathway can result in colon tumors but the role of norrin-based signaling in the genesis of colon cancer, and its relationship to activation of the pathway by traditional Wnt ligands, is not defined.  相似文献   

2.
3.
4.
The importance of SULF1 in modulating the activities of multiple signalling molecules is now well established. Several studies, however, reported little or no effect of Sulf1 null mutations, questioning the relevance of this gene to in vivo development. The failure of SULF1 deletion to influence development may be predicted if one considers the involvement of a naturally occurring SULF1 antagonist, generated by alternative splicing of the same gene. We demonstrate that while the previously described SULF1 (SULF1A) enhances Wnt signalling, the novel shorter isoform (SULF1B) inhibits Wnt signalling. Our studies show developmental stage specific changes in the proportions of SULF1A and SULF1B isoforms at both the mRNA and protein levels in many developing tissues, with particularly pronounced changes in developing and adult blood vessels. Unlike SULF1A, SULF1B promotes angiogenesis and is highly expressed in endothelial cells during early blood vessel development while SULF1A predominates in mature endothelial cells. We propose that the balance of two naturally occurring SULF1 variants, with opposing functional activities, may regulate the overall net activities of multiple secreted factors and the associated signalling cascades essential for normal development and maintenance of most tissues.  相似文献   

5.
Secreted Frizzled-related protein-1 (sFRP-1) contains a cysteine-rich domain homologous to the putative Wnt-binding site of Frizzleds. To facilitate the biochemical and biological analysis of sFRP-1, we developed a mammalian recombinant expression system that yields approximately 3 mg of purified protein/liter of conditioned medium. Using this recombinant protein, we demonstrated that sFRP-1 and Wg (wingless) interact in enzyme-linked immunosorbent and co-precipitation assays. Surprisingly, a derivative lacking the cysteine-rich domain retained the ability to bind Wg. Cross-linking experiments performed with radioiodinated sFRP-1 provided definitive evidence that sFRP-1 and Wg bind directly to each other. Besides detecting a cross-linked complex consistent in size with 1:1 stoichiometry of sFRP-1 and Wg, we also observed a larger complex whose size suggested the presence of a second sFRP-1 molecule. The formation of both complexes was markedly enhanced by an optimal concentration of exogenous heparin, emphasizing the potential importance of heparan-sulfate proteoglycan in Wnt binding and signaling. sFRP-1 exerted a biphasic effect on Wg activity in an armadillo stabilization assay, increasing armadillo level at low concentrations but reducing it at higher concentrations. These results provide new insights about the Wnt binding and biological activity of sFRPs.  相似文献   

6.
We have carried out a small pool expression screen for modulators of the Wnt/beta-catenin pathway and identified Xenopus R-spondin2 (Rspo2) as a secreted activator of this cascade. Rspo2 is coexpressed with and positively regulated by Wnt signals and synergizes with Wnts to activate beta-catenin. Analyses of functional interaction with components of the Wnt/beta-catenin pathway suggest that Rspo2 functions extracellularly at the level of receptor ligand interaction. In addition to activating the Wnt/beta-catenin pathway, Rspo2 overexpression blocks Activin, Nodal, and BMP4 signaling in Xenopus, raising the possibility that it may negatively regulate the TGF-beta pathway. Antisense Morpholino experiments in Xenopus embryos and RNAi experiments in HeLa cells reveal that Rspo2 is required for Wnt/beta-catenin signaling. In Xenopus embryos depleted of Rspo2, the muscle markers myoD and myf5 fail to be activated and later muscle development is impaired. Thus, Rspo2 functions in a positive feedback loop to stimulate the Wnt/beta-catenin cascade.  相似文献   

7.
Early shaping of Xenopus laevis embryos occurs through convergent and extension movements, a process that is driven by intercalation of polarized dorsal mesodermal cells and regulated by non-canonical Wnt signalling. Here, we have identified Xenopus syndecan-4 (xSyn4), a cell-surface transmembrane heparan sulphate proteoglycan. At the gastrula stage, xSyn4 is expressed in the involuting dorsal mesoderm and the anterior neuroectoderm. Later, it is found in the pronephros, branchial arches, brain and tailbud. Both gain- and loss-of-function of xSyn4 impaired convergent extension movements in Xenopus embryos and in activin-treated ectodermal explants. xSyn4 interacts functionally and biochemically with the Wnt receptor Frizzled7 (xFz7) and its signal transducer Dishevelled (xDsh). Furthermore, xSyn4 is necessary and sufficient for translocation of xDsh to the plasma membrane - a landmark in the activation of non-canonical Wnt signalling. Our results suggest that the ability of xSyn4 to translocate xDsh is regulated by fibronectin, a component of the extracellular matrix required for proper convergent extension movements. We propose a model where xSyn4 and fibronectin cooperate with xFz7 and Wnt in the specific activation of the non-canonical Wnt pathway.  相似文献   

8.
Bcr is a negative regulator of the Wnt signalling pathway   总被引:5,自引:0,他引:5  
Ress A  Moelling K 《EMBO reports》2005,6(11):1095-1100
  相似文献   

9.
In mammals, the three classical ras genes encode four highly homologous proteins, N-Ras, H-Ras, and the isoforms K-Ras 4A and 4B. Previous studies have shown that K-ras is essential for mouse development and that while K-ras 4A and 4B are expressed during development, K-ras 4A expression is regulated temporally and spatially and occurs in adult kidney, intestine, stomach, and liver. In the present study, the pattern of K-ras 4A expression was examined in a wide range of wild-type adult mouse tissues, and gene targeting was used to generate K-ras 4A-deficient mice to examine its role in development. It was found that K-ras 4A is also expressed in uterus, lung, pancreas, salivary glands, seminal vesicles, bone marrow cells, and cecum, where it was the major K-Ras isoform expressed. Mating between K-ras(tmDelta4A/+) mice produced viable K-ras(tmDelta4A/tmDelta4A) offspring with the expected Mendelian ratios of inheritance, and these mice expressed the K-ras 4B splice variant only. K-ras(tmDelta4A/tmDelta4A) mice were fertile and showed no histopathological abnormalities on inbred (129/Ola) or crossbred (129/Ola x C57BL/6) genetic backgrounds. The results demonstrate that K-Ras 4A, like H- and N-Ras, is dispensable for normal mouse development, at least in the presence of functional K-Ras 4B.  相似文献   

10.
The protein Noggin4 of the African clawed frog Xenopus laevis has been shown to act as a modulator of the “noncanonical” Wnt/PCP-signaling pathway that plays an important role in the regulation of cell motility. Induction of disturbances in the expression of Noggin4 led to the activation of Wnt/PCP-pathway and the related anomalies of early embryonic development. The Noggin4 protein can bind the Wnt11 protein that normally contributes to the activation of the Wnt/PCP-pathway and of enhancing the activator effect of this protein in luciferase assays. Thus, Noggin4 can be used as a tool for specific experimental regulation of the activity of the Wnt/PCP pathway.  相似文献   

11.
Several variants of the serotonin 5-HT4 receptor are known to be produced by alternative splicing. To survey the existence and usage of exons in humans, we cloned the human 5-HT4 gene. Based on sequence analysis seven C-terminal variants (a-g) and one internal splice variant (h) were found. We concentrated in this study on the functional characterization of the novel splice variant h, which leads to the insertion of 14 amino acids into the second extracellular loop of the receptor. The h variant was cloned as a splice combination with the C-terminal b variant; therefore, we call this receptor 5-HT4(hb). This novel receptor variant was expressed transiently in COS-7 cells, and its pharmacological profile was compared with those of the previously cloned 5-HT4(a) and 5-HT4(b) isoforms, with the latter being the primary reference for the h variant. In competition binding experiments using reference 5-HT4 ligands, no significant differences were detected. However, the broadly used 5-HT4 antagonist GR113808 discriminated functionally among the receptor variants investigated. As expected, it was an antagonist on the 5-HT4(a) and 5-HT4(b) variant but showed partial agonistic activity on the 5-HT4(hb) variant. These data emphasize the importance of variations introduced by splicing for receptor pharmacology and may help in the understanding of conflicting results seen with 5-HT4 ligands in different model systems.  相似文献   

12.
Antiproliferative factor (APF) is a low molecular weight sialoglycopeptide that is secreted by bladder cells from interstitial cystitis patients and is a potent inhibitor of both normal bladder epithelial and bladder carcinoma cell proliferation. We hypothesized that APF may produce its antiproliferative effects by binding to a transmembrane receptor. This study demonstrates that cytoskeleton-associated protein 4/p63 (CKAP4/p63), a type II transmembrane receptor, binds with high affinity to APF. The antiproliferative activity of APF is effectively inhibited by preincubation with anti-CKAP4/p63-specific antibodies, as well as by short interfering RNA knockdown of CKAP4/p63. Immunofluorescent confocal microscopy showed co-localization of anti-CKAP4/p63 and rhodamine-labeled synthetic APF binding in both cell membrane and perinuclear areas. APF also inhibits the proliferation of HeLa cervical carcinoma cells that are known to express CKAP4/p63. These data indicate that CKAP4/p63 is an important epithelial cell receptor for APF.  相似文献   

13.
14.
Anteroposterior (AP) patterning of the vertebrate neural plate is initiated during gastrulation and is regulated by Spemann's organizer and its derivatives. The prevailing model for AP patterning predicts a caudally increasing gradient of a 'transformer' which posteriorizes anteriorly specified neural cells. However, the molecular identity of the transforming gradient has remained elusive. We show that in Xenopus embryos (1) dose-dependent Wnt signalling is both necessary and sufficient for AP patterning of the neuraxis, (2) Wnt/beta-catenin signalling occurs in a direct and long-range fashion within the ectoderm, and (3) that there is an endogenous AP gradient of Wnt/beta-catenin signalling in the presumptive neural plate of the Xenopus gastrula. Our results indicate that an activity gradient of Wnt/beta-catenin signalling acts as transforming morphogen to pattern the Xenopus central nervous system.  相似文献   

15.
Frizzled-1 (FZD1)-FZD10 are seven-transmembrane-type WNT receptors, and SFRP1-SFRP5 are soluble-type WNT antagonists. These molecules are encoded by mutually distinct genes. We have previously isolated and characterized the 7.7-kb FZD4 mRNA, encoding a seven-transmembrane receptor with the extracellular cysteine-rich domain (CRD). Here, we have cloned and characterized FZD4S, a splicing variant of the FZD4 gene. FZD4S, corresponding to the 10.0-kb FZD4 mRNA, consisted of exon 1, intron 1, and exon 2 of the FZD4 gene. FZD4S encoded a soluble-type polypeptide with the N-terminal part of CRD, and was expressed in human fetal kidney. Injection of synthetic FZD4S mRNA into the ventral marginal zone of Xenopus embryos at the 4-cell stage did not induce axis duplication by itself, but augmented the axis duplication potential of coinjected Xwnt-8 mRNA. These results indicate that the FZD4 gene gives rise to soluble-type FZD4S as well as seven-transmembrane-type FZD4 due to alternative splicing, and strongly suggest that FZD4S plays a role as a positive regulator of the WNT signaling pathway.  相似文献   

16.
17.
The ryanodine receptor subtype 3 (RYR3) is expressed ubiquitously but its physiological function varies from cell to cell. Here, we investigated the role of a dominant negative RYR3 isoform in Ca2+ signalling in native smooth muscle cells. We used intranuclear injection of antisense oligonucleotides to specifically inhibit endogenous RYR3 isoform expression. In mouse duodenum myocytes expressing RYR2 subtype and both spliced and non-spliced RYR3 isoforms, RYR2 and non-spliced RYR3 were activated by caffeine whereas the spliced RYR3 was not. Only RYR2 was responsible for the Ca2+-induced Ca2+ release mechanism that amplified Ca2+ influx- or inositol 1,4,5-trisphosphate-induced Ca2+ signals. However, the spliced RYR3 negatively regulated RYR2 leading to the decrease of amplitude and upstroke velocity of Ca2+ signals. Immunostaining in injected cells showed that the spliced RYR3 was principally expressed near the plasma membrane whilst the non-spliced isoform was revealed around the nucleus. This study shows for the first time that the short isoform of RYR3 controls Ca2+ release through RYR2 in native smooth muscle cells.  相似文献   

18.
Frizzled genes, encoding WNT receptors, play key roles in cell fate determination. Here, we isolated two Xenopus frizzled genes (Xfz10A and Xfz10B), probably reflecting pseudotetraploidy in Xenopus. Xfz10A (586 amino acids) and Xfz10B (580 amino acids) both encoded by a single exon, consisted of the N-terminal cysteine-rich domain, seven transmembrane domains, and the C-terminal Ser/Thr-X-Val motif. Xfz10A and Xfz10B were 97.0% identical at the amino acid level, and Xfz10B was 100% identical to previously reported Xfz9, yet Xfz10A was 85.3% and 62.4% identical to FZD10 and FZD9, respectively. Xfz10 mRNA appeared as 3.4 kb in adult tissues and embryos. RT-PCR analyses revealed the expression of more Xfz10A mRNA in stomach, kidney, eye, skeletal muscle, and skin, and more Xfz10B mRNA in heart and ovary, but in embryos, two mRNAs were equally expressed from the blastula stage with their peak expression at the late gastrula stage. The main site of Xfz10 mRNA expression was neural fold at the neurula stage and the dorsal region of midbrain, hindbrain, and spinal cord at the tadpole stage. These results suggest that Xfz10 has important roles in neural tissue formation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号