首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of nitrobenzyl phosphoramide mustards and their analogs was designed and synthesized to explore their structure-activity relationships as substrates of nitroreductases from Escherichia coli and trypanosomes and as potential antiproliferative and antiparasitic agents. The position of the nitro group on the phenyl ring was important with the 4-nitrobenzyl phosphoramide mustard (1) offering the best combination of enzyme activity and antiproliferative effect against both mammalian and trypanosomatid cells. A preference was observed for halogen substitutions ortho to benzyl phosphoramide mustard but distinct differences were found in their SAR of substituted 4-nitrobenzyl phosphoramide mustards in E. coli nitroreductase-expressing cells and in trypanosomatids expressing endogenous nitroreductases.  相似文献   

2.
Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.  相似文献   

3.
HPLC-analysis of the reaction products of a series of 4-methylumbelliferyl glycosides from cello-oligosaccharides, used as substrates of a cellobiohydrolase from Trichoderma reesei, proves the lack of specificity for terminal cellobiosyl groups. Also, different reaction patterns are observed for this CBHI and for an endocellulase, when acting on these same substrates. 4-Methylumbelliferyl β-D-lactoside is an unexpected substrate for CBHI, yielding only lactose and phenol as reaction products. The binding characteristics of p-nitrobenzyl 1-thio-β-D-lactoside for this enzyme are determined by a dia-filtration technique, yielding 1 binding site and an association constant of 4.0 × 104 M?1.  相似文献   

4.
N-Bromosuccinimide completely inactivated the cellulase, and titration experiments showed that oxidation of one tryptophan residue per cellulase molecule coincided with 100% inactivation. CM-cellulose protected the enzyme from inactivation by N-bromosuccinimide. The cellulase was inhibited by active benzyl halides, and reaction with 2-hydroxy-5-nitrobenzyl bromide resulted in the incorporation of 2.3 hydroxy-5-nitrobenzyl groups per enzyme molecule; one tryptophan residue was shown to be essential for activity. Diazocarbonyl compounds in the presence of Cu2+ ions inhibited the enzyme. The pH-dependence of inactivation was consistent with the reaction occurring with a protonated carboxyl group. Carbodi-imide inhibited the cellulase, and kinetic analysis indicated that there was an average of 1 mol of carbodi-imide binding to the cellulase during inactivation. Treatment of the cellulase with diethyl pyrocarbonate resulted in the modification of two out of the four histidine residues present in the cellulase. The modified enzyme retained 40% of its original activity. Inhibition of cellulase activity by the metal ions Ag+ and Hg2+ was ascribed to interaction with tryptophan residues, rather than with thiol groups.  相似文献   

5.
Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine–CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N8,N8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3′-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3′-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself.  相似文献   

6.

Background

Resuscitation promoting factors (Rpfs) are the proteins involved in the process of reactivation of the dormant cells of mycobacteria. Recently a new class of nitrophenylthiocyanates (NPTs), capable of inhibiting the biological and enzymatic activities of Rpfs has been discovered. In the current study the inhibitory properties of the compounds containing both nitro and thiocyanate groups alongside with the compounds with the modified number and different spatial location of the substituents are compared.

Methods

New benzoylphenyl thiocyanates alongside with nitrophenylthiocyanates were tested in the enzymatic assay of bacterial peptidoglycan hydrolysis as well as against strains of several actinobacteria (Mycobacterium smegmatis, Mycobacterium tuberculosis) on in-lab developed models of resuscitation of the dormant forms.

Results

Introduction of the additional nitro and thiocyanate groups to the benzophenone scaffold did not influence the inhibitory activity of the compounds. Removal of the nitro groups analogously did not impair the functional properties of the molecules. Among the tested compounds two molecules without nitro group: 3-benzoylphenyl thiocyanate and 4-benzoylphenyl thiocyanate demonstrated the maximum activity in both enzymatic assay (inhibition of the Rpf-mediated peptidoglycan hydrolysis) and in the resuscitation assay of the dormant M. tuberculosis cells.

Conclusions

The current study demonstrates dispensability of the nitro group in the NPT’s structure for inhibition of the enzymatic and biological activities of the Rpf protein molecules. These findings provide new prospects in anti-TB drug discovery especially in finding of molecular scaffolds effective for the latent infection treatment.
  相似文献   

7.
NADP—苹果酸酶活性变化及其在CAM运行中的调节   总被引:4,自引:0,他引:4  
NADP-苹果酸酶是CAM植物一种重要脱羧酶。实验结果表明,专一CAM植物瓦松和兼性CAM植物长药景天及露花其NADP-苹果酸酶活性昼高夜低;5-8月,兼性CAM植物长药景天和露花随着C3光合型向CAD型转化,其中NADP-苹果酸活活性逐渐升高。  相似文献   

8.
Dihydroorotase (DHOase) is the third enzyme in the de novo pyrimidine synthesis pathway and is responsible for the reversible cyclization of carbamyl-aspartate (Ca-asp) to dihydroorotate (DHO). DHOase is further divided into two classes based on several structural characteristics, one of which is the length of the flexible catalytic loop that interacts with the substrate, Ca-asp, regulating the enzyme activity. Here, we present the crystal structure of Class I Bacillus anthracis DHOase with Ca-asp in the active site, which shows the peptide backbone of glycine in the shorter loop forming the necessary hydrogen bonds with the substrate, in place of the two threonines found in Class II DHOases. Despite the differences in the catalytic loop, the structure confirms that the key interactions between the substrate and active site residues are similar between Class I and Class II DHOase enzymes, which we further validated by mutagenesis studies. B. anthracis DHOase is also a potential antibacterial drug target. In order to identify prospective inhibitors, we performed high-throughput screening against several libraries using a colorimetric enzymatic assay and an orthogonal fluorescence thermal binding assay. Surface plasmon resonance was used for determining binding affinity (KD) and competition analysis with Ca-asp. Our results highlight that the primary difference between Class I and Class II DHOase is the catalytic loop. We also identify several compounds that can potentially be further optimized as potential B. anthracis inhibitors.  相似文献   

9.
Multitarget molecular hybrids of N-benzyl pyrrolidine derivatives were designed, synthesized, and biologically evaluated for the treatment of Alzheimer’s disease (AD). Among the synthesized compounds, 4k and 4o showed balanced enzyme inhibitions against cholinesterases (AChE and BChE) and BACE-1. Both leads showed considerable PAS-AChE binding capability, excellent brain permeation, potential disassembly of Aβ aggregates, and neuroprotective activity against Aβ-induced stress. Compounds 4k and 4o also ameliorated cognitive dysfunction against the scopolamine-induced amnesia model in the Y-maze test. The ex vivo study signified attenuated brain AChE activity and antioxidant potential of compounds 4k and 4o. Furthermore, compound 4o also showed improvement in Aβ-induced cognitive dysfunction by the Morris water maze test with excellent oral absorption characteristics ascertained by the pharmacokinetic study. In silico molecular docking and dynamics simulation studies of leads suggested their consensual binding affinity toward PAS-AChE in addition to aspartate dyad of BACE-1.  相似文献   

10.
In this paper we present the inhibitory effect of a variety of structurally modulated/modified polyphenolic compounds on purified F(1) or membrane bound F(1)F(o)Escherichia coli ATP synthase. Structural modulation of polyphenols with two phenolic rings inhibited ATP synthase essentially completely; one or three ringed polyphenols individually or fused together inhibited partially. We found that the position of hydroxyl and nitro groups plays critical role in the degree of binding and inhibition of ATPase activity. The extended positioning of hydroxyl groups on imino diphenolic compounds diminished the inhibition and abridged position enhanced the inhibition potency. This was contrary to the effect by simple single ringed phenolic compounds where extended positioning of hydroxyl group was found to be effective for inhibition. Also, introduction of nitro group augmented the inhibition on molar scale in comparison to the inhibition by resveratrol but addition of phosphate group did not. Similarly, aromatic diol or triol with rigid or planar ring structure and no free rotation poorly inhibited the ATPase activity. The inhibition was identical in both F(1)F(o) membrane preparations as well as in isolated purified F(1) and was reversible in all cases. Growth assays suggested that modulated compounds used in this study inhibited F(1)-ATPase as well as ATP synthesis nearly equally.  相似文献   

11.
Platelet-activating factor acetylhydrolase (PAF-AH) is transported by lipoproteins in plasma and is thought to possess both anti-inflammatory and anti-oxidative activity. It has been reported that PAF-AH is recovered primarily in small, dense LDL and HDL following ultracentrifugal separation of lipoproteins. In the present studies, we aimed to further define the distribution of PAF-AH among lipoprotein fractions and subfractions, and to determine whether these distributions are affected by the lipoprotein isolation strategy (FPLC versus sequential ultracentrifugation) and LDL particle distribution profile. When lipoproteins were isolated by FPLC, the bulk (~85%) of plasma PAF-AH activity was recovered within LDL-containing fractions, whereas with ultracentrifugation, there was a redistribution to HDL (which contained ~18% of the activity) and the d>1.21 g/ml fraction (which contained ~32%). Notably, re-ultracentrifugation of isolated LDL did not result in any further movement of PAF-AH to higher densities, suggesting the presence of dissociable and nondissociable forms of the enzyme on LDL. Differences were noted in the distribution of PAF-AH activity among LDL subfractions from subjects exhibiting the pattern A (primarily large, buoyant LDL) versus pattern B (primarily small, dense LDL) phenotype. In the latter group, there was a relative depletion of PAF-AH activity in subfractions in the intermediate to dense range (d=1.039–1.047 g/ml) with a corresponding increase in enzyme activity recovered within the d>1.21 g/ml ultracentrifugal fraction. Thus, there appears to be a greater proportion of the dissociable form of PAF-AH in pattern B subjects. In both populations, most of the nondissociable activity was recovered in a minor small, dense LDL subfraction. Based on conjugated dienes as a measure of lipid peroxidation, variations in PAF-AH activity appeared to contribute to variations in oxidative behavior among ultracentrifugally isolated LDL subfractions. The physiologic relevance of PAF-AH dissociability and the minor PAF-AH-enriched oxidation-resistant LDL subpopulation remains to be determined.  相似文献   

12.
Post-translational modification of proteins is an efficient way cells use to control the activity of structural proteins, gene expression regulatory proteins, and enzymes. In eukaryotes, the Sir2-dependent system of protein acetylation/deacetylation controls a number of processes that affect cell longevity. Sir2 proteins have NAD+-dependent protein deacetylase activity and are found in all forms of life. Although the identity of the acetyltransferases that partner with Sir2 enzymes is known in eukaryotes, the identity of the prokaryotic acetyltransferases is not. We report the identification of the gene of Salmonella enterica serovar Typhimurium LT2 encoding the major protein acetyltransferase (Pat) enzyme that, in concert with the CobB sirtuin of this bacterium, regulates the activity of the central metabolic enzyme acetyl-coenzyme A synthetase (Acs). The Pat enzyme uses acetyl-CoA as substrate to modify residue Lys609 of Acs. The Pat/CobB system of S. enterica should serve as the paradigm to further investigate the contributions of this system to the physiology of prokaryotes.  相似文献   

13.
We have developed a novel enzyme assay that allows the simultaneous determination of noncovalent interactions of poly(ADP-ribose) with nuclear proteins as well as poly(ADP-ribose) glycohydrolase (PARG) activity by high resolution polyacrylamide gel electrophoresis. ADP-ribose chains between 2 and 70 residues in size were enzymatically synthesized with pure poly(ADP-ribose) polymerase (PARP) and were purified by affinity chromatography on a boronate resin following alkaline release from protein. This preparation of polymers of ADP-ribose was used as the enzyme substrate for purified PARG. We also obtained the nuclear matrix fraction from rat liver nuclei and measured the enzyme activity of purified PARG in the presence or absence of either histone proteins or nuclear matrix proteins. Both resulted in a marked inhibition of PARG activity as determined by the decrease in the formation of monomeric ADP-ribose. The inhibition of PARG was presumably due to the non-covalent interactions of these proteins with free ADP-ribose polymers. Thus, the presence of histone and nuclear matrix proteins should be taken into consideration when measuring PARG activity.  相似文献   

14.
In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom.  相似文献   

15.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

16.
Previously it was shown that transient chloramphenicol acetyltransferase (CAT) marker gene expression in Arabidopsis thaliana and Nicotiana tabacum resulted in significant differences in the accumulation of the CAT reaction products in radioactive CAT assays. Compared to Nicotiana tabacum, conversion of chloramphenicol to the acetylated products in Arabidopsis thaliana extracts was rather low. Here we report that the low CAT enzyme activity can be attributed in part to a heat sensitive CAT inhibitory effect in extracts of Arabidopsis thaliana. CAT enzyme activity in transgenic tobacco is inhibited by extracts from Arabidopsis. This inhibitory effect diminishes when Arabidopsis extracts were heat incubated. CAT activity in transgenic Arabidopsis lines was very low and was only detected in heat incubated extracts. Alternatively, enzyme-linked immunosorbent assays (ELISAs) can be used to detect the CAT protein in transgenic Arabidopsis.Abbreviations CAT chloramphenicol acetyltransferase - CAM chloramphenicol - ELISA enzyme linked immunosorbent assay  相似文献   

17.
Ion-exchange chromatography and Sephadex gel filtration were used to isolate a soluble proteolytic enzyme from culture (epimastigote) forms of Trypanosoma cruzi. The enzyme had a molecular weight of ~200,000 and an isoelectric point of pH 5.5. The enzyme exhibited protease, esterase, and transamidase activity, with a Michaelis constant of 0.122 mmole/liter [substrate: α-N-benzoyl-dl-arginine-p-nitroanilide (BAPA)]. The enzyme was specific for peptide bonds, involving the carboxyl groups of arginine, tryptophan, or α-N-substituted lysine. Two percent of the enzyme molecule was carbohydrate; glucose, mannose, xylose, galactose, and glucosamine were detected. The enzyme was inhibited by several sulfhydryl inhibitors, and was highly susceptible to oxidation. We concluded that the enzyme possesses active sulfhydryl groups.  相似文献   

18.
In Salmonella typhimurium, a single enzyme catalyzes both the acetyl CoA-dependent O-acetylation of hydroxylamines (a key step in the activation of mutagenic nitroaromatic compounds and related aromatic and heterocyclic amines) and the N-acetylation of aromatic amines. S. typhimurium Ames test mutants lacking this activity are highly resistant to the genotoxic effects of nitro compounds. However, such mutants have not yet been obtained in Escherichia coli. We used a PCR-based method to engineer a null mutation (deletion) of the nhoA gene encoding the enzyme in E. coli and we transduced this mutation into a lacZ strain background suitable for use in mutation assays. In E. coli, as in S. typhimurium, nhoA mutants show marked resistance to nitro compound mutagenicity. The new strains provide a clean background for expression of recombinant N-acetyltransferases.  相似文献   

19.
Thirty-nine allylic and non-allylic compounds have been tested in the standard 4-(p-nitrobenzyl)pyridine (NBP) alkylating procedure and the Salmonella typhimurium mutagenicity assay. Fourteen of these were found directly mutagenic (without addition of S-9 mix activating enzyme system). With twelve of these compounds, a good correlation of alkylating and mutagenic potencies was established; the remaining two do not meet the chemical conditions of the NBP procedure on account of HCl elimination with these two compounds. The other 25 substances were inactive in both systems. The quantitative correlation proved to be almost linear in the lower activity ranges (E ~ 2; revertants/μmol ~ 600). The reasons for some deviations from the linear relationship have been analyzed and discussed on the basis of structural features. In addition to the standard alkylation test, a modified NBP-test was performed in order to obtain kinetic data and activation energy values. The results with 6 representative allylic compounds show that the overall correlation is not substantially improved above that of the standard procedure; nonetheless, additional information on reaction characteristics is obtained with some substances.  相似文献   

20.
Sea urchin eggs secrete esteroproteolytic activity at fertilization. This enzyme has been shown to be proteolytic toward embryo protein and casein, but a systematic study of its substrate specificity has not been done. In this communication we present data that demonstrates for the first time that the cortical granule protease from Strongylocentrotus purpuratus eggs cleaves arginyl residues in a protein substrate, lysozyme. We have developed a sensitive reverse-phase high-performance liquid chromatography (RP-HPLC) assay that detects femtomole levels of trypsin and chymotrypsin protease activity [Green, 1986: Anal Biochem 152:83–88]. In the sea urchin system, we have detected protease activity from as few as 50 eggs. Correlating the RP-HPLC analysis with a spectrophotometric Nα-benzoyl-L-arginine ethyl ester assay, we have found that each egg secretes approximately 40 attomoles of trypsin-like activity. This general method should be quite useful in investigations into the natural substrate of the egg protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号