共查询到20条相似文献,搜索用时 0 毫秒
1.
Shivani Sharma Pooja Chaudhary Rajat Sandhir Abhishek Bharadwaj Rajinder K. Gupta Rahul Khatri Amir Chand Bajaj T. P. Baburaj Sachin Kumar M. S. Pal Prasanna K. Reddy Bhuvnesh Kumar 《Cell stress & chaperones》2021,26(2):323
The present study aimed to investigate the differential response of oxidative (soleus) and glycolytic (gastrocnemius) muscles to heat-induced endoplasmic reticulum (ER) stress. It was hypothesized that due to compositional and functional differences, both muscles respond differently to acute heat stress. To address this, male Sprague Dawley rats (12/group) were subjected to thermoneutral (25 °C) or heat stress (42 °C) conditions for 1 h. Soleus and gastrocnemius muscles were removed for analysis post-exposure. A significant increase in body temperature and free radical generation was observed in both the muscles following heat exposure. This further caused a significant increase in protein carbonyl content, AOPP, and lipid peroxidation in heat-stressed muscles. These changes were more pronounced in heat-stressed soleus compared to the gastrocnemius muscle. Accumulation of unfolded, denatured proteins results in ER stress, causing activation of unfolded protein response (UPR) pathway. The expressions of UPR transducers were significantly higher in soleus as compared to the gastrocnemius muscle. A significant elevation in resting intracellular calcium ion was also observed in heat-stressed soleus muscle. Overloading of cells with misfolded proteins in soleus muscle activated ER-induced apoptosis as indicated by significant upregulation of C/EBP homologous protein and Caspase12. The study provides a detailed mechanistic representation of the differential response of muscles toward UPR under heat stress. Data suggests that soleus majorly being an oxidative muscle is more prone to heat stress-induced insult indicated by enhanced apoptosis. This study may aid in devising mitigation strategies to improve muscle performance under heat stress.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01178-x. 相似文献
2.
Kohsuke Kanekura Hiroaki Suzuki Sadakazu Aiso Masaaki Matsuoka 《Molecular neurobiology》2009,39(2):81-89
Several theories on the pathomechanism of amyotrophic lateral sclerosis (ALS) have been proposed: misfolded protein aggregates,
mitochondrial dysfunction, increased glutamate toxicity, increased oxidative stress, disturbance of intracellular trafficking,
and so on. In parallel, a number of drugs that have been developed to alleviate the putative key pathomechanism of ALS have
been under clinical trials. Unfortunately, however, almost all studies have finished unsuccessfully. This fact indicates that
the key ALS pathomechanism still remains a tough enigma. Recent studies with autopsied ALS patients and studies using mutant
SOD1 (mSOD1) transgenic mice have suggested that endoplasmic reticulum (ER) stress-related toxicity may be a relevant ALS
pathomechanism. Levels of ER stress-related proteins were upregulated in motor neurons in the spinal cords of ALS patients.
It was also shown that mSOD1, translocated to the ER, caused ER stress in neurons in the spinal cord of mSOD1 transgenic mice.
We recently reported that the newly identified ALS-causative gene, vesicle-associated membrane protein-associated protein
B (VAPB), plays a pivotal role in unfolded protein response (UPR), a physiological reaction against ER stress. The ALS-linked
P56S mutation in VAPB nullifies the function of VAPB, resulting in motoneuronal vulnerability to ER stress. In this review,
we summarize recent advances in research on the ALS pathomechanism especially addressing the putative involvement of ER stress
and UPR dysfunction. 相似文献
3.
在真核细胞中,内质网对蛋白质的折叠和运输至关重要,多种病理因素对内质网稳态的扰乱,可导致内质网腔中未折叠或错误折叠蛋白蓄积,即内质网应激(ERS)。细胞为此通过激活一种叫做未折叠蛋白反应(UPR)的防御反应来恢复内质网稳态。自噬是一种被描述为\"自我吞食\"的细胞代谢过程,其通过批量清除和降解未折叠蛋白以及破损细胞器在ERS时作为一种重要的保护机制。近年的研究显示这两个系统动态互联,且ERS可以通过多种方式诱导自噬的发生。在本文中,我们将总结目前关于ERS尤其是UPR诱导自噬的分子机制的相关知识,以进一步指导关于ERS与自噬关系的的研究。 相似文献
4.
IRE1, an ER-localized transmembrane protein, plays a central role in the unfolded protein response. Upon ER stress, IRE1 senses the accumulation of unfolded proteins in the ER, and transfers signal from the ER to the cytosol. Recently, it was reported that the luminal domain of yeast Ire1 senses the unfolded proteins via a two-step mechanism, namely dissociation of BiP and direct interaction with unfolded proteins. However, it has been unclear whether a similar mechanism is applicable to mammalian IRE1α. To address this point, we analyzed luminal-domain mutants of mammalian IRE1α in cells, and evaluated the anti-aggregation activity of the luminal fragment of IRE1α in vitro. We generated a mutant that has low affinity for BiP, and this mutant was significantly activated even under normal conditions. Moreover, the luminal fragments of mammalian IRE1α did not exhibit anti-aggregation activity. These results suggest that in contrast to yeast Ire1, the regulation of mammalian IRE1α strongly depends on the dissociation of BiP. 相似文献
5.
Synthetic embryonic lethality upon deletion of the ER cochaperone p58 and the ER stress sensor ATF6α
Javier A. Gomez Heather M. Tyra Diane DeZwaan-McCabe Alicia K. Olivier D. Thomas Rutkowski 《Biochemical and biophysical research communications》2014
The unfolded protein response (UPR) is activated as a consequence of alterations to ER homeostasis. It upregulates a group of ER chaperones and cochaperones, as well as other genes that improve protein processing within the secretory pathway. The UPR effector ATF6α augments—but is not essential for—maximal induction of ER chaperones during stress, yet its role, if any, in protecting cellular function during normal development and physiology is unknown. A systematic analysis of multiple tissues from Atf6α−/− mice revealed that all tissues examined were grossly insensitive to loss of ATF6α. However, combined deletion of ATF6α and the ER cochaperone p58IPK resulted in synthetic embryonic lethality. These findings reveal for the first time that an intact UPR can compensate for the genetic impairment of protein folding in the ER in vivo. The also expose a role for p58IPK in normal embryonic development. 相似文献
6.
Allen JR Nguyen LX Sargent KE Lipson KL Hackett A Urano F 《Biochemical and biophysical research communications》2004,324(1):166-170
Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins in the ER, elicits an adaptive response, the unfolded protein response (UPR). One component of the UPR, the endoplasmic reticulum-associated protein degradation (ERAD) system, has an important function in the survival of ER stressed cells. Here, we show that HRD1, a component of the ERAD system, is upregulated in pancreatic islets of the Akita diabetes mouse model and enhances intracellular degradation of misfolded insulin. High ER stress in beta-cells stimulated mutant insulin degradation through HRD1 to protect beta-cells from ER stress and ensuing death. If HRD1 serves the same function in humans, it may serve as a target for therapeutic intervention in diabetes. 相似文献
7.
8.
【目的】内质网应激(Endoplasmic reticulum stress,ERS)可激活细胞保护性信号级联反应——未折叠蛋白质反应(Unfolded protein response,UPR)。研究表明,酵母细胞中的UPR信号通路由转录因子Hac1p和ERS感应因子Ire1p共同介导。前期研究发现:蛋白质-O-甘露糖转移酶1(Protein-O-mannosyltransferase 1,PMT1)基因缺失能延长酵母细胞的复制性寿命,其机制与上调UPR通路活性相关。本文进一步探讨PMT1基因缺失在酵母ERS反应中的作用。【方法】观察PMT1基因与IRE1或HAC1基因双缺失酵母菌株(pmt1?hac1?和pmt1?ire1?)在ERS反应条件下的克隆形成能力;通过比色法检测各菌株的细胞增殖活性;RT-PCR检测各菌株UPR通路下游部分靶基因的转录水平。【结果】与对照菌株比较,PMT1基因缺失菌株(pmt1?)在ERS反应条件下生长较慢,而HAC1和IRE1单基因缺失菌株(hac1?和ire1?)在ERS反应条件下无法存活;在hac1?或ire1?菌株的基础上进一步缺失PMT1基因,可以改善hac1?菌株在ERS反应条件下的生长状态;但缺失PMT1基因没有上调hac1?菌株UPR通路靶基因的转录水平。【结论】缺失PMT1基因可增强hac1?菌株对ERS诱导剂衣霉素的抗性,机制与已知的UPR通路不相关,提示可能存在其它途径参与ERS反应的调控。 相似文献
9.
10.
Mohammad Fareed Khan Alpana Mathur Vivek Kumar Pandey Poonam Kakkar 《Journal of cell communication and signaling》2022,16(2):271
Endoplasmic reticulum (ER) dysfunction plays a prominent role in the pathophysiology of diabetic nephropathy (DN). This study aimed to investigate the novel role of Naringenin (a flavanone mainly found in citrus fruits) in modulating ER stress in hyperglycemic NRK 52E cells and STZ/nicotinamide induced diabetes in Wistar rats. The results demonstrated that Naringenin supplementation downregulated the expression of ER stress marker proteins, including p-PERK, p-eIF2α, XBP1s, ATF4 and CHOP during hyperglycemic renal toxicity in vitro and in vivo. Naringenin abrogated hyperglycemia-induced ultrastructural changes in ER, evidencing its anti-ER stress effects. Interestingly, treatment of Naringenin prevented nuclear translocation of ATF4 and CHOP in hyperglycemic renal cells and diabetic kidneys. Naringenin prevented apoptosis in hyperglycemic renal cells and diabetic kidney tissues by downregulating expression of apoptotic marker proteins. Further, photomicrographs of TEM confirmed anti-apoptotic potential of Naringenin as it prevented membrane blebbing and formation of apoptotic bodies in hyperglycemic renal cells. Naringenin improved glucose tolerance, restored serum insulin level and reduced serum glucose level in diabetic rats evidencing its anti-hyperglycemic effects. Histopathological examination of kidney tissues also confirmed prevention of damage after 28 days of Naringenin treatment in diabetic rats. Additionally, Naringenin diminished oxidative stress and improved antioxidant defense response during hyperglycemic renal toxicity. Taken together, our study revealed a novel role of Naringenin in ameliorating ER stress during hyperglycemic renal toxicity along with prevention of apoptosis, cellular and tissue damage. The findings suggest that prevention of ER stress can be exploited as a novel approach for the management of hyperglycemic nephrotoxicity. Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00644-0. 相似文献
11.
Various physiological and pathological conditions generate an accumulation of misfolded proteins in the endoplasmic reticulum (ER). This results in ER stress followed by a cellular response to cope with this stress and restore homeostasis: the unfolded protein response (UPR). Overall, the UPR leads to general translational arrest and the induction of specific factors to ensure cell survival or to mediate cell death if the stress is too severe. In multiple cancers, components of the UPR are overexpressed, indicating increased dependence on the UPR. In addition, the UPR can confer resistance to anti-cancer treatment. Therefore, modification of the UPR should be explored for its anti-cancer properties. This review discusses factors associated with the UPR that represent potential therapeutic targets. 相似文献
12.
Lim JH Park JW Kim SH Choi YH Choi KS Kwon TK 《Apoptosis : an international journal on programmed cell death》2008,13(11):1378-1385
Rottlerin, a compound reported to be a PKC δ-selective inhibitor, has been shown to induce growth arrest or apoptosis of human
cancer cell lines. In our study, rottlerin dose-dependently induced apoptotic cell death in colon carcinoma cells. Treatment
of HT29 human colon carcinoma cells with rottlerin was found to induce a number of signature ER stress markers; phosphorylation
of eukaryotic initiation factor-2α (eIF-2α), ER stress-specific XBP1 splicing, and up-regulation of glucose-regulated protein
(GRP)-78 and CCAAT/enhancer-binding protein-homologous protein (CHOP). However, suppression of PKC δ expression by siRNA or
overexpression of WT-PKC δ and DN-PKC δ did not abrogate the rottlerin-mediated induction of CHOP. These results suggest that
rottlerin induces up-regulation of CHOP via PKC δ-independent pathway. Furthermore, down-regulation of CHOP expression using
CHOP siRNA attenuated rottlerin-induced apoptosis. Taken together, the present study thus provides strong evidence to support
an important role of ER stress response in mediating the rottlerin-induced apoptosis. 相似文献
13.
Pae HO Jeong SO Jeong GS Kim KM Kim HS Kim SA Kim YC Kang SD Kim BN Chung HT 《Biochemical and biophysical research communications》2007,353(4):1040-1045
Curcumin has been shown to induce apoptosis in many cancer cells. However, the molecular mechanism(s) responsible for curcumin-induced apoptosis is not well understood and most probably involves several pathways. In HL-60 cells, curcumin induced apoptosis and endoplasmic reticulum (ER) stress as evidenced by the survival molecules such as phosphorylated protein kinase-like ER-resident kinase, phosphorylated eukaryotic initiation factor-2alpha, glucose-regulated protein-78, and the apoptotic molecules such as caspase-4 and CAAT/enhancer binding protein homologous protein (CHOP). Inhibition of caspase-4 activity by z-LEVD-FMK, blockage of CHOP expression by small interfering RNA, and treatment with salubrinal, an ER inhibitor, significantly reduced curcumin-induced apoptosis. Removing two double bonds in curcumin, which was speculated to form Michael adducts with thiols in secretory proteins, resulted in a loss of the ability of curcumin to induce apoptosis as well as ER stress. Thus, the present study shows that curcumin-induced apoptosis is associated with its ability to cause ER stress. 相似文献
14.
Genetic and epigenetic regulation as well as immune surveillance are known defense mechanisms to protect organisms from developing cancer. Based on experimental evidence, we proposed that small metabolically active molecules accumulating in cancer cells may play a role in an alternative antitumor surveillance system. Previously, we reported that treatment with a mixture of experimentally selected small molecules, usually found in the serum (defined ‘active mixture’, AM), selectively induces apoptosis in cancer cells and significantly inhibits tumor formation in vivo. In this study, we show that the AM elicits gene expression changes characteristic of endoplasmic reticulum (ER) stress in HeLa, MCF-7, PC-3 and Caco-2 cancer cells, but not in primary human renal epithelial cells. The activation of the ER stress pathway was confirmed by the upregulation of ATF3, ATF4, CHAC1, DDIT3 and GDF15 proteins. Mechanistically, our investigation revealed that eIF2α, PERK and IRE1α are phosphorylated upon treatment with the AM, linking the induction of ER stress to the antiproliferative and proapoptotic effects of the AM previously demonstrated. Inhibition of ER stress in combination with BBC3 and PMAIP1 knockdown completely abrogated the effect of the AM. Moreover, we also demonstrated that the AM induces mIR-3189-3p, which in turn enhances the expression of ATF3 and DDIT3, thus representing a possible new feedback mechanism in the regulation of ATF3 and DDIT3 during ER stress. Our results highlight small molecules as attractive anticancer agents and warrant further evaluation of the AM in cancer therapy, either alone or in combination with other ER stress inducing agents. 相似文献
15.
16.
The unfolded protein response in human corneal endothelial cells following hypothermic storage: implications of a novel stress pathway 总被引:1,自引:0,他引:1
Human corneal endothelial cells (HCEC) have become increasingly important for a range of eye disease treatment therapies. Accordingly, a more detailed understanding of the processing and preservation associated stresses experienced by corneal cells might contribute to improved therapeutic outcomes. To this end, the unfolded protein response (UPR) pathway was investigated as a potential mediator of corneal cell death in response to hypothermic storage. Once preservation-induced failure had begun in HCECs stored at 4 °C, it was noted that necrosis accounted for the majority of cell death but with significant apoptotic involvement, peaking at several hours post-storage (4–8 h). Western blot analysis demonstrated changes associated with apoptotic activation (caspase 9, caspase 3, and PARP cleavage). Further, the activation of the UPR pathway was observed through increased and sustained levels of ER folding and chaperone proteins (Bip, PDI, and ERO1-Lα) in samples experiencing significant cell death. Modulation of the UPR pathway using the specific inhibitor, salubrinal, resulted in a 2-fold increase in cell survival in samples experiencing profound cold-induced failure. Furthermore, this increased cell survival was associated with increased membrane integrity, cell attachment, and decreased necrotic cell death populations. Conversely, addition of the UPR inducer, tunicamycin, during cold exposure resulted in a significant decrease in HCEC survival during the recovery period. These data implicate for the first time that this novel cell stress pathway may be activated in HCEC as a result of the complex stresses associated with hypothermic exposure. The data suggest that the targeted control of the UPR pathway during both processing and preservation protocols may improve cell survival and function of HCEC thus improving the clinical utility of these cells as well as whole human corneas. 相似文献
17.
Soo-Young Park Honggang Ye Graeme I. Bell 《Biochemical and biophysical research communications》2010,391(3):1449-1454
Mutations in the preproinsulin protein that affect processing of preproinsulin to proinsulin or lead to misfolding of proinsulin are associated with diabetes. We examined the subcellular localization and secretion of 13 neonatal diabetes-associated human proinsulin proteins (A24D, G32R, G32S, L35P, C43G, G47V, F48C, G84R, R89C, G90C, C96Y, S101C and Y108C) in rat INS-1 insulinoma cells. These mutant proinsulin proteins accumulate in the endoplasmic reticulum (ER) and are poorly secreted except for G84R and in contrast to wild-type and hyperproinsulinemia-associated mutant proteins (H34D and R89H) which were sorted to secretory granules and efficiently secreted. We also examined the effect of C96Y mutant proinsulin on the synthesis and secretion of wild-type insulin and observed a dominant-negative effect of the mutant proinsulin on the synthesis and secretion of wild-type insulin due to induction of the unfolded protein response and resulting attenuation of overall translation. 相似文献
18.
19.