首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
A novel, non-acid series of nitroquinoxalinone derivatives was synthesized and tested for their inhibitory activity against aldose reductase as targeting enzyme. All active compounds displayed an 8-nitro group, and showed significant activity in IC50 values ranging from 1.54 to 18.17 μM. Among them 6,7-dichloro-5,8-dinitro-3-phenoxyquinoxalin-2(1H)-one (7e), exhibited the strongest aldose reductase activity with an IC50 value of 1.54 μM and a good SAR (structure–activity relationship) profile.  相似文献   

2.
Dihydrobenzoxazinone based design and synthesis produced two series of compounds as aldose reductase (ALR2) inhibitor candidates. In particular, phenolic residues were embodied into the compounds for the combination of strengthening the inhibitory acitvity and antioxidant ability to retard the progression of diabetic complications. Most of the derivatives with styryl side chains exhibited excellent activities on selective ALR2 inhibition with IC50 values ranging from 0.082 to 0.308 μM, and {8-[2-(4-hydroxy-phenyl)-vinyl]-2-oxo-2,3-dihydro-benzo[1,4]oxazin-4-yl}-acetic acid (3a) was the most potent. More significantly, most of dihydrobenzoxazinone compounds revealed not only good inhibitory effect on ALR2, but also showed powerful antioxidant activity. Notably, phenolic compound 3a was even comparable to the well-known antioxidant Trolox, confirming that the C8 p-hydroxystyryl substitution was key structure of lowering oxidative stress. Therefore, these results provided an achievement of multifunctional ALR2 inhibitors possessing capacities for both ALR2 inhibition and as antioxidants.  相似文献   

3.
Aldose reductase is an important enzyme in the polyol pathway, where glucose is converted to fructose, and sorbitol is released. Aldose reductase activity increases in diabetes as the glucose levels increase, resulting in increased sorbitol production. Sorbitol, being less cell permeable tends to accumulate in tissues such as eye lenses, peripheral nerves and glomerulus that are not insulin sensitive. This excessive build-up of sorbitol is responsible for diabetes associated complications such as retinopathy and neuropathy. In continuation of our interest to design and discover potent inhibitors of aldo-keto reductases (AKRs; aldehyde reductase ALR1 or AKR1A, and aldose reductase ALR2 or AKR1B), herein we designed and investigated a series of new benzoxazinone-thiosemicarbazones (3a-r) as ALR2 and ALR1 inhibitors. Most compounds exhibited excellent inhibitory activities with IC50 values in lower micro-molar range. Compounds 3b and 3l were found to be most active ALR2 inhibitors with IC50 values of 0.52 ± 0.04 and 0.19 ± 0.03 μM, respectively, both compounds were more effective inhibitors as compared to the standard ALR2 inhibitor (sorbinil, with IC50 value of 3.14 ± 0.02 μM).  相似文献   

4.
Diabetes remains a life-threatening disease. The clinical profile of diabetic subjects is often worsened by the presence of several long-term complications, for example neuropathy, nephropathy, retinopathy, and cataract. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of 2,4-thiazolidinediones derivatives as aldose reductase (ALR2) inhibitors. Molecular ligand superimposition on a template structure was finished by the database alignment method. The 3D-QSAR models resulted from 44 molecules gave q 2 values of 0.773 and 0.817, r 2 values of 0.981 and 0.979 for CoMFA and CoMSIA, respectively. The contour maps from the models indicated that a large volume group next to the R-substituent will increase the ALR2 inhibitory activity. In fact, adding a -CH2COOH substituent at the R-position would generate a new compound with higher predicted activity.  相似文献   

5.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

6.
Starting from the efficient hexahydropyridoindole antioxidant stobadine, a series of carboxymethylated tetrahydro- and hexahydropyridoindole derivatives was synthesized and tested for the inhibition of aldose reductase, an enzyme involved in the etiology of diabetic complications. In vitro inhibiton of rat lens aldose reductase was determined by a conventional method. Kinetic analysis of (2-benzyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole-8-yl)-acetic acid (5b) and (2-phenethyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole-8-yl)-acetic acid (5c), the most potent compounds in this series with activities in micromolar range, showed uncompetitive inhibition. In addition to the importance of the acidic function, the inhibition efficacy was highly influenced by the steric conformation of the lipophilic aromatic backbone when comparing tetrahydro- and hexahydropyridoindole congeners. Selectivity with respect to the closely related aldehyde reductase was determined by measuring the corresponding inhibitory activities. Antioxidant action of the novel compounds was documented in a DPPH test and in a liposomal membrane model, oxidatively stressed by peroxyl radicals. The presence of a basicity center at the tertiary nitrogen, in addition to the acidic carboxylic function, predisposes these compounds to form double charged zwitterionic species, a characteristic which may remarkably affect their pH-lipophilicity profile. For compounds 5b and 5c, a maximal distribution ratio in a system comprised of 1-octanol/phosphate buffer was recorded near the neutral physiological pH, the region where the isoelectric point lies. Molecular docking simulations into the ALR2 active site performed for the zwitterionic species provided an explanation for the observed structure–activity relationships and the calculated parameters were in agreement with characteristic differences in the stereoelectronic profiles of the tetrahydro- versus hexahydropyridoindoles. ‘Drug-likeness’ of the novel aldose reductase inhibitors was assessed by applying the criteria of Lipinski’s ‘rule of five’.  相似文献   

7.
A series of quinazolinone-based rhodanine-3-acetic acids was synthesized and tested for in vitro aldose reductase inhibitory activity. All the target compounds displayed nanomolar activity against the target enzyme. Compounds 3a, 3b, and 3e exhibited almost 3-fold higher activity as compared to the only marketed reference drug epalrestat. Structure-activity relationship studies indicated that bulky substituents at the 3-phenyl ring of the quinazolinone moiety are generally not tolerated in the active site of the enzyme. Insertion of a methoxy group on the central benzylidene ring was found to have a variable effect on ALR-2 activity depending on the nature of peripheral quinazolinone ring substituents. Removal of the acetic acid moiety led to inactive or weakly active target compounds. Docking and molecular dynamic simulations of the most active rhodanine-3-acetic acid derivatives were also carried out, to provide the basis for further structure-guided design of novel inhibitors.  相似文献   

8.
Clinical studies have revealed that diabetic retinopathy is a multifactorial disorder. Moreover, studies also suggest that ALR2 and PARP-1 co-occur in retinal cells, making them appropriate targets for the treatment of diabetic retinopathy. To find the dual inhibitors of ALR2 and PARP-1, the structure based design was carried out in parallel for both the target proteins. A series of novel thiazolidine-2,4-dione (TZD) derivatives were therefore rationally designed, synthesized and their in vitro inhibitory activities against ALR2 and PARP-1 were evaluated. The experimental results showed that compounds 5b and 5f, with 2-chloro and 4-fluoro substitutions, showed biochemical activities in micromolar and submicromolar range (IC50 1.34–5.03 μM) against both the targeted enzymes. The structure-activity relationship elucidated for these novel inhibitors against both the enzymes provide new insight into the binding mode of the inhibitors to the active sites of enzymes. The positive results of the biochemical assay suggest that these compounds may be further optimized and utilized for the treatment of diabetic retinopathy.  相似文献   

9.
Therapeutic intervention with aldose reductase inhibitors appears to be promising for major pathological conditions (i.e., long-term diabetic complications and inflammatory pathologies). So far, however, clinical candidates have failed due to adverse side-effects (spiroimides) or poor bioavailability (carboxylic acids). In this work, we succeeded in the bioisosteric replacement of an acetic acid moiety with that of 1-hydroxypyrazole. This new scaffold appears to have a superior physicochemical profile, while attaining inhibitory activity in the submicromolar range.  相似文献   

10.
The root of Panax ginseng C. A. Meyer (Araliaceae) is a well-known herbal medicine in East Asia. The major bioactive metabolites in this root are commonly identified as ginsenosides. A series of ginsenosides were determined for in vitro human recombinant aldose reductase. This Letter aims to clarify the structural requirement for aldose reductase inhibition. We discovered that only ginsenoside 20(S)-Rh2 showed potent against aldose reductase, with an IC50 of 147.3 μM. These results implied that the stereochemistry of the hydroxyl group at C-20 may play an important role in aldose reductase inhibition. An understanding of these requirements is considered necessary in order to develop a new type of aldose reductase inhibitor. Furthermore, P. ginseng might be an important herbal medicine in preventing diabetic complications.  相似文献   

11.
Aldose reductase (AR) inhibitors are used clinically to treat long-term diabetic complications. Previous studies reported a series of AR inhibitory candidates, but unfortunately the mode of inhibition was poorly described due mainly to the lack of readily available methods for evaluating the specificity. The present study examined the AR inhibitory effects of novel synthetic hydantoins and their structural relatives, some of which were obtained from chemically engineered extracts of natural plants, and discovered several novel AR inhibitors with moderate inhibitory activity. The identified inhibitors were then subjected to a two-step mechanistic characterization using a detergent-addition assay and our novel dimethyl sulfoxide (DMSO)-perturbation assay. The detergent-addition assay revealed aggregation-based inhibitors, and the subsequent DMSO-perturbation assay identified nonspecific binding inhibitors. Thus, the present study demonstrates the usefulness of the DMSO-perturbation screen for identifying nonspecific binding characteristics of AR inhibitors.  相似文献   

12.
A series of lanostane-type triterpenoids, known as ganoderma acids were isolated from the fruiting body of Ganoderma lucidum. Some of these compounds were identified as active inhibitors of the in vitro human recombinant aldose reductase. To clarify the structural requirement for inhibition, some structure–activity relationships were determined. Our structure–activity studies of ganoderma acids revealed that the OH substituent at C-11 is an important feature and the carboxylic group in the side chain is essential for the recognition of aldose reductase inhibitory activity. Moreover, double bond moiety at C-20 and C-22 in the side chain contributes to improving aldose reductase inhibitory activity. In the case of ganoderic acid C2, all of OH substituent at C-3, C-7 and C-15 is important for potent aldose reductase inhibition. These results provide an approach to understanding the structural requirements of ganoderma acids from G. lucidum for aldose reductase inhibitor. This understanding is necessary to design a new-type of aldose reductase inhibitor.  相似文献   

13.
Aldose reductase (AR) plays an important role in the design of drugs that prevent and treat diabetic complications. Aldose reductase inhibitors (ARIs) have received significant attentions as potent therapeutic drugs. Based on combination principles, three series of luteolin derivatives were synthesised and evaluated for their AR inhibitory activity and nitric oxide (NO)-releasing capacity in vitro. Eighteen compounds were found to be potent ARIs with IC50 values ranging from (0.099 ± 0.008) μM to (2.833 ± 0.102) μM. O7-Nitrooxyethyl-O3′,O4′-ethylidene luteolin (La1) showed the most potent AR inhibitory activity [IC50 = (0.099 ± 0.008) μM]. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure–activity relationship studies suggested that introduction of an NO donor, protection of the catechol structure, and the ether chain of a 2-carbon spacer as a coupling chain on the luteolin scaffold all help increase the AR inhibitory activity of the resulting compound. This class of NO-donor luteolin derivatives as efficient ARIs offer a new concept for the development and design of new drug for preventive and therapeutic drugs for diabetic complications.  相似文献   

14.
The protective action of alpha-crystallin against copper-induced protein stress is studied using bovine lens aldose reductase (ALR2) as protein model. The oxidative inactivation of ALR2 induced by CuCl2 at the stoichiometric Cu2+/ALR2 ratio of 2/1 [I. Cecconi, M. Moroni, P.G. Vilardo, M. Dal Monte, P. Borella, G. Rastelli, L. Costantino, D. Garland, D. Carper, J.M. Petrash, A. Del Corso, U. Mura, Biochemistry 37 (1998) 14167-14174] is accompanied by protein aggregation phenomena when the metal ion concentration is increased (Cu2+/ALR2>3). Protein oxidation precedes protein precipitation. Both inactivation and precipitation of ALR2 are prevented by alpha-crystallin in a concentration-dependent manner. The rationale for the stabilization of ALR2 exerted by alpha-crystallin at low metal concentration is given on the basis of the ability of alpha-crystallin to chelate copper. However, the overall protective action exerted by alpha-crystallin at higher copper concentration may be explained invoking the contribution of the special features of alpha-crystallin to easily interact with target proteins undergoing structural rearrangement.  相似文献   

15.
An ethanolic extract of Artemisia dracunculus L. having antidiabetic activity was examined as a possible aldose reductase (ALR2) inhibitor, a key enzyme involved in diabetic complications. At 3.75 microg/mL, the total extract inhibited ALR2 activity by 40%, while quercitrin, a known ALR2 inhibitor, inhibited its activity by 54%. Bioactivity guided fractionation and isolation of the compounds that inhibit ALR2 activity was carried out with the total ethanolic extract yielding four bioactive compounds with ALR2 inhibitory activity ranging from 58% to 77% at 3.75 microg/mL. Using LC/MS, (1)H NMR, (13)C NMR and 2D NMR spectroscopic analyses, the four compounds were identified as 4,5-di-O-caffeoylquinic acid, davidigenin, 6-demethoxycapillarisin and 2',4'-dihydroxy-4-methoxydihydrochalcone. This is the first report on their isolation from A. dracunculus and the ALR2 inhibitory activity of 4,5-di-O-caffeoylquinic acid, 6-demethoxycapillarisin and 2',4'-dihydroxy-4-methoxydihydrochalcone. These results suggest a use of the extract of A. dracunculus for ameliorating diabetic complications.  相似文献   

16.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

17.
Among the available methods for predicting free energies of binding of ligands to a protein, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) approaches have been validated for a relatively limited number of targets and compounds in the training set. Here, we report the results of an extensive study on a series of 28 inhibitors of aldose reductase with experimentally determined crystal structures and inhibitory activities, in which we evaluate the ability of MM-PBSA and MM-GBSA methods in predicting binding free energies using a number of different simulation conditions. While none of the methods proved able to predict absolute free energies of binding in quantitative agreement with the experimental values, calculated and experimental free energies of binding were significantly correlated. Comparing the predicted and experimental ΔG of binding, MM-PBSA proved to perform better than MM-GBSA, and within the MM-PBSA methods, the PBSA of Amber performed similarly to Delphi. In particular, significant relationships between experimental and computed free energies of binding were obtained using Amber PBSA and structures minimized with a distance-dependent dielectric function. Importantly, while free energy predictions are usually made on large collections of equilibrated structures sampled during molecular dynamics in water, we have found that a single minimized structure is a reasonable approximation if relative free energies of binding are to be calculated. This finding is particularly relevant, considering that the generation of equilibrated MD ensembles and the subsequent free energy analysis on multiple snapshots is computationally intensive, while the generation and analysis of a single minimized structure of a protein–ligand complex is relatively fast, and therefore suited for high-throughput virtual screening studies. At this aim, we have developed an automated workflow that integrates all the necessary steps required to generate structures and calculate free energies of binding. The procedure is relatively fast and able to screen automatically and iteratively molecules contained in databases and libraries of compounds. Taken altogether, our results suggest that the workflow can be a valuable tool for ligand identification and optimization, being able to automatically and efficiently refine docking poses, which sometimes may not be accurate, and rank the compounds based on more accurate scoring functions.  相似文献   

18.
Diabetes mellitus is a group of metabolic disorders that has risen to become the third most common cause in humans in recent years. The development of new bioactive substances from natural sources is a relatively new area. Flavonoids are believed to have a variety of beneficial properties in nature, including anti-inflammatory, antimicrobial, anticancer, antioxidant, neuroprotective, and anti-HIV properties. 15 naturally occurring flavonoids docked with the selected target aldose reductase. We report the optimal binding of Acumitin, Agathisflavone, Agehoustin B, and alpha-Toxicarol with aldose reductase for further consideration in drug discovery for T2DM.  相似文献   

19.
The inhibition of aldose reductase (AR) provides an interesting strategy to prevent the complications of chronic diabetes. Although a large number of different AR inhibitors are known, very few of these compounds exhibit sufficient efficacy in clinical trials. We performed a virtual screening based on the ultrahigh resolution crystal structure of the inhibitor IDD594 in complex with human AR. AR operates on a large scale of structurally different substrates. To achieve this pronounced promiscuity, the enzyme can adapt rather flexibly to its substrates. Likewise, it has a similar adaptability for the binding of inhibitors. We applied a protocol of consecutive hierarchical filters to search the Available Chemicals Directory. In the first selection step, putative ligands were chosen that exhibit functional groups to anchor the anion-binding pocket of AR. Subsequently, a pharmacophore model based on the binding geometry of IDD594 and the mapping of the binding pocket in terms of putative "hot spots" of binding was applied as a second consecutive filter. In a third and final filtering step, the remaining candidate molecules were flexibly docked into the binding pocket of IDD594 with FlexX and ranked according to their estimated DrugScore values. Out of 206 compounds selected by this search and complemented by a cluster analysis and visual inspection, 9 compounds were selected and subjected to biological testing. Of these, 6 compounds showed IC50 values in the micromolar range. According to the proposed binding mode, the two inhibitors BTB02809 (IC50 = 2.4 +/- 0.5 microM) and JFD00882 (IC50 = 4.1 +/- 1.0 microM) both place a nitro group into the hydrophobic specificity pocket of human AR in an orientation coinciding with the position of the bromine atom of IDD594. The interaction of this Br with Thr113 has been identified as a key feature that is responsible for selectivity enhancement.  相似文献   

20.
The role of aldose reductase (ALR2) in diabetes mellitus is well-established. Our interest in finding ALR2 inhibitors led us to explore the inhibitory potential of new thiosemicarbazones. In this study, we have synthesized adamantyl-thiosemicarbazones and screened them as aldehyde reductase (ALR1) and aldose reductase (ALR2) inhibitors. The compounds bearing phenyl 3a, 2-methylphenyl 3g and 2,6-dimethylphenyl 3m have been identified as most potent ALR2 inhibitors with IC50 values of 3.99 ± 0.38, 3.55 ± 0.26 and 1.37 ± 0.92 µM, respectively, compared with sorbinil (IC50 = 3.14 ± 0.02 μM). The compounds 3a, 3g, and 3m also inhibit ALR1 with IC50 value of 7.75 ± 0.28, 7.26 ± 0.39 and 7.04 ± 2.23 µM, respectively. Molecular docking was also performed for putative binding of potent inhibitors with target enzyme ALR2. The most potent 2,6-dimethylphenyl bearing thiosemicarbazone 3m (IC50 = 1.37 ± 0.92 µM for ALR2) and other two compound 3a and 3g could potentially lead for the development of new therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号