首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
城市住宅建筑系统流量-存量动态模拟——以北京市为例   总被引:1,自引:0,他引:1  
地面建筑物的累积与更新是城市化过程的结果与显性特征之一。城市建筑系统在不同层面上与外部环境系统进行着物质能量交换,对这种交互产生的资源压力与环境胁迫的关注,使其成为城市代谢研究领域中的热点问题。系统分析与模拟城市建筑物流量-存量的动态变化过程及其资源环境响应,对于揭示城市建筑系统代谢机理,提高城市总体规划精准性、强化资源系统韧性管理、提升废弃物处置效率等宏观战略具有重要意义。以北京市为例,基于Stella建模平台,构建了城市居民住宅建筑系统流量-存量的动态模拟模型,定量模拟了不同管理情景下钢材需求量与建筑拆除垃圾产生量的变化区间。结果表明:(1)基准情景下,北京住宅建筑新建流量前期增速较快,2005年达到峰值3024.1万m~2,而拆除流量约于2057年达到峰值,拆除面积为2073.14万m~2;城市住宅建筑存量最高值出现在2075年左右,面积为7.51亿m~2;(2)与基准情景相比,如果人均住宅建筑面积提高到45 m~2,从现在到模拟期结束(2019—2100)将增加钢铁需求量3251.65万t;而如果延长住宅建筑寿命至设计值,同期可减少钢铁需求量3022.9万t;(3)基准情景、大面积情景以及长寿命情景下,北京市城镇住宅建筑拆除垃圾峰值产生量分别为0.29亿t、0.39亿t、0.20亿t,政府管理部门应采取有针对性的应对措施,提前做出综合利用和处理处置方案。  相似文献   

2.
Construction material plays an increasingly important role in the environmental impacts of buildings. In order to investigate impacts of materials on a building level, we present a bottom‐up building stock model that uses three‐dimensional and geo‐referenced building data to determine volumetric information of material stocks in Swiss residential buildings. We used a probabilistic modeling approach to calculate future material flows for the individual buildings. We investigated six scenarios with different assumptions concerning per‐capita floor area, building stock turnover, and construction material. The Swiss building stock will undergo important structural changes by 2035. While this will lead to a reduced number in new constructions, material flows will increase. Total material inflow decreases by almost half while outflows double. In 2055, the total amount of material in‐ and outflows are almost equal, which represents an important opportunity to close construction material cycles. Total environmental impacts due to production and disposal of construction material remain relatively stable over time. The cumulated impact is slightly reduced for the wood‐based scenario. The scenario with more insulation material leads to slightly higher material‐related emissions. An increase in per‐capita floor area or material turnover will lead to a considerable increase in impacts. The new modeling approach overcomes the limitations of previous bottom‐up building models and allows for investigating building material flows and stocks in space and time. This supports the development of tailored strategies to reduce the material footprint and environmental impacts of buildings and settlements.  相似文献   

3.
Building stock constitutes a huge repository of construction materials in a city and a potential source for replacing primary resources in the future. This article describes the application of a methodological approach for analyzing the material stock (MS) in buildings and its spatial distribution at a city‐wide scale. A young Latin‐American city, the city of Chiclayo in Peru, was analyzed by combining geographical information systems (GIS) data, census information, and data collected from different sources. Application of the methodology yielded specific indicators for the physical size of buildings (i.e., gross floor area and number of stories) and their material composition. The overall MS in buildings, in 2007, was estimated at 24.4 million tonnes (Mt), or 47 tonnes per capita. This mass is primarily composed of mineral materials (97.7%), mainly concrete (14.1 Mt), while organic materials (e.g., 0.15 Mt of wood) and metals (e.g., 0.40 Mt of steel) constitute the remaining share (2.3%). Moreover, historical census data and projections were used to evaluate the changes in the MS from 1981 to 2017; showing a 360% increase of the MS in the last 36 years. This study provides essential supporting information for urban planners, helping to provide a better understanding of the availability of resources in the city and its future potential supply for recycling as well as to develop strategies for the management of construction and demolition waste.  相似文献   

4.
LCA of concrete and steel building frames   总被引:1,自引:0,他引:1  
The effects on the external environment of seven concrete and steel building frames representative of present-day building technology in Sweden were analysed using LCA methodology. Objects of the study included frame construction and supplementary materials. Several-storey offices and dwellings were studied. The functional unit was defined as one average m2 of floor area during the lifetime of the building. Inventory data were elaborated for concrete and steel production, the building site, service life, demolition and final disposal. Parameters included were raw material use, energy use, emissions to air, emissions to water and waste generation. The inventory results were presented and evaluated as such, in addition to an interpretation by using three quantitative impact assessment methods. Parameters that weighed heavily were use of fossil fuels, CO2, electricity, SOx 2 NOx 2 alloy materials and waste, depending on what assessment method was used. Over the life cycle, building production from cradle to gate accounted for about the same contribution to total environmental loads as maintenance and replacement of heat losses through external walls during service life, whereas demolition and final disposal accounted for a considerably lower contribution.  相似文献   

5.

Purpose

The aim of the paper is to estimate life cycle costs (LCC) of the current housing stock in the UK as part of sustainability assessment of the residential construction sector. This is carried out by first estimating the life cycle costs of individual houses considering detached, semi-detached and terraced homes. These results are then extrapolated to the UK housing stock consisting of seven million each of semi-detached and terraced houses and four million of detached houses. A brief discussion of life cycle environmental impacts is also included to help identify improvement opportunities for both costs and impacts.

Methods

The life cycle costing methodology followed in the study is congruent with the life cycle assessment methodology. The system boundary for the study is from ‘cradle to grave’, including all activities from extraction and manufacture of construction materials to construction and use of the house to its demolition. The functional unit is defined as the construction and occupation of a house in the UK over the lifetime of 50 years.

Results and discussion

The total life cycle costs are estimated at £247,000 for the detached house, £192,000 for the semi-detached and £142,000 for the terraced house. The running costs in the use stage contribute 52 % to the total life cycle costs of which half is from energy use. The construction costs contribute 35 % to the total LCC with the walls and the roof being the most expensive items. The remaining 13 % of the costs are incurred at the end of life of the house which are largely (85 %) due to the cost of labour for demolition. Recovery of end-of-life materials has a limited potential to reduce the overall life cycle costs of a house. The life cycle costs of the whole housing stock are estimated at £67 billion per year or £3,360 billion over the 50-year lifetime.

Conclusions

The existing housing stock in the UK is facing a number of challenges that will need to be addressed in the near future. These include improving energy efficiency and reducing the dependency on fossil fuels to reduce energy demand, fuel poverty and environmental impacts. Furthermore, the disparity between the construction costs and house market prices will need to be addressed to ensure that access to housing and house ownership do not become the privilege of a few.  相似文献   

6.
Despite accounting for almost 50% of global material use, nonmetallic minerals—mostly used for construction of buildings and infrastructure—are the material flow analysis (MFA) category with the highest uncertainty. The main reason for this is incomplete reporting in official national statistics because of ease of availability and the low per‐unit cost of these materials. However, the environmental burden associated with nonmetallic minerals, which include energy use for extraction and transport, land‐use change, and disposal of large amounts of construction demolition waste, call for a thorough understanding of the magnitude of nonmetallic mineral flows. Previous estimates for nonmetallic minerals have used simplistic assumptions. This study aims to increase the precision of nonmetallic mineral accounts at national and global level using consumption of bitumen, bricks, cement, and railways in combination with technical coefficients from the engineering literature to infer the actual yearly consumption of nonmetallic minerals. We estimate the extraction of nonmetallic minerals and provide uncertainty estimates for the new accounts as well as information about consumption by different sectors. Analyzing the evolution of consumption for seven world regions, we find that, in North America and Europe, the consumption of nonmetallic minerals over the past 40 years has followed the growth patterns of population, whereas for all other regions consumption has been closely related to gross domestic product (GDP). A more accurate account of global and country‐by‐country extraction of nonmetallic minerals may provide insights into supply shortages and inform waste management strategies for construction and demolition waste.  相似文献   

7.
The stock‐driven dynamic material flow analysis (MFA) model is one of the prevalent tools to investigate the evolution and related material metabolism of the building stock. There exists substantial uncertainty inherent to input parameters of the stock‐driven dynamic building stock MFA model, which has not been comprehensively evaluated yet. In this study, a probabilistic, stock‐driven dynamic MFA model is established and China's urban housing stock is selected as the empirical case. This probabilistic dynamic MFA model has the ability to depict the future evolution pathway of China's housing stock and capture uncertainties in its material stock, inflow, and outflow. By means of probabilistic methods, a detailed and transparent estimation of China's housing stock and its material metabolism behavior is presented. Under a scenario with a saturation level of the population, urbanization, and living space, the median value of the urban housing stock area, newly completed area, and demolished area would peak at around 49, 2.2, and 2.2 billion square meters, respectively. The corresponding material stock and flows are 79, 3.5, and 3.3 billion tonnes, respectively. Uncertainties regarding housing stock and its material stock and flows are non‐negligible. Relative uncertainties of the material stock and flows are above 50%. The uncertainty importance analysis demonstrates that the material intensity and the total population are major contributions to the uncertainty. Policy makers in the housing sector should consider the material efficiency as an essential policy to mitigate material flows of the urban building stock and to lower the risk of policy failures.  相似文献   

8.
The building stock consumes large amounts of resources for maintenance and expansion which is only exacerbated by disaster events where large‐scale reconstruction must occur quickly. Recent research has shown the potential for application of material stock (MS) accounts for informing disaster risk planning. In this research, we present a methodological approach to analyze the vulnerability of the material stock in buildings to extreme weather events and sea‐level rise (SLR) due to climate change. The main island of Grenada, a Small Island Developing State (SIDS) in the Caribbean region, was used as a case study. A bottom‐up approach based on a geographic information system (GIS) is used to calculate the total MS of aggregate, timber, concrete, and steel in buildings. The total MS in buildings in 2014 was calculated to be 11.9 million tonnes (Mt), which is equivalent to 112 tonnes per capita. Material gross addition to stock (GAS) between 1993 to 2009 was 6.8 Mt and the average value over the time period was 4.0 tonnes per capita per year. In the year following Hurricane Ivan (2004), the per capita GAS for timber increased by 172%, while for other metals, GAS spiked by 103% (compared to average growth rates of 11% and 8%, respectively, between 1993 and 2009). We also ran a future “Ivan‐II” scenario and estimated a hypothetical loss of between 135 and 216 kilotonnes (kt) of timber from the building stock. The potential impact of SLR is also assessed, with an estimated 1.6 Mt of building material stock exposed under a 2‐m scenario. We argue that spatial material stock accounts have an important application in planning for resilience and provide indication of the link between natural disaster recovery and resource use patterns.  相似文献   

9.
Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.  相似文献   

10.
Projection of Construction and Demolition Waste in Norway   总被引:1,自引:0,他引:1  
Current waste generation from the construction and demolition industry (C&D industry) in Norway is about 1.25 million tonnes per year. This article presents a procedure for projection of future waste amounts by estimating the activity level in the C&D industry, determining specific waste generation factors related to this activity, and finally calculating projections on flows of waste materials leaving the stocks in use and moving into the waste management system. This is done through a simple model of stocks and flows of buildings and materials. Monte Carlo simulation is used in the calculations to account for uncertainties related to the input parameters in order to make the results more robust. The results show a significant increase in C&D waste for the years to come, especially for the large fractions of concrete/bricks and wood. These projections can be a valuable source of information to predict the future need for waste treatment capacity, the dominant waste fractions, and the challenges in future waste handling systems. The proposed method is used in a forthcoming companion article for eco-efficiency modeling within an evaluation of a C&D waste system.  相似文献   

11.
Carbon‐based materials (CBMs) for energetic and material purposes combine biogenic and anthropogenic carbon cycles. In the latter, numerous manufactured products with various in‐use lifespans accumulate as anthropogenic carbon stocks. Understanding the behavior of these stocks is an important requirement to estimate not only future waste amounts, source for secondary raw materials, but also the impacts and effects in carbon emissions and carbon management. Previous models have estimated material stock changes; however, a lack of research in carbon stocks is perceived. Moreover, studies follow in‐use lifespan estimation approaches, such as decay functions, which do not coincide with observed consumption and waste treatment patterns. In the first part of this article, we present a carbon stock‐flow model to analyze inter‐relationships between carbon flows and stocks from raw materials to waste treatment processes considering a consumer perspective, where the dynamics of anthropogenic carbon stocks are completely described. In the second part, we study the pulp and paper industry in Germany under a scenario approach to analyze the behavior, development, and impacts of paper stocks and flows between 2010 and 2040. The model provided coherent results, with industrial data estimating 33.9 million metric tons in 2010 in paper stocks, equivalent to 410 kilograms per person. Consumption per capita and in‐use lifespan of products were identified as the most significant variables in carbon stock building. Model simulations show a sustained growth in stocks for the next 30 years, with increase in waste and carbon emissions. But in combination with recycling and reuse mechanisms and consumption patterns, environmental impacts are reduced.  相似文献   

12.
The building stock is not only a huge consumer of resources (for its construction and operation), but also represents a significant source for the future supply of metallic and mineral resources. This article describes how material stocks in buildings and their spatial distribution can be analyzed on a city level. In particular, the building structure (buildings differentiated by construction period and utilization) of Vienna is analyzed by joining available geographical information systems (GIS) data from various municipal authorities. Specific material intensities for different building categories (differentiated by construction period and utilization) are generated based on multiple data sources on the material composition of different building types and combined with the data on the building structure. Utilizing these methods, the overall material stock in buildings in Vienna was calculated to be 380 million metric tonnes (t), which equals 210 t per capita (t/cap). The bulk of the material (>96%) is mineral, whereas organic materials (wood, plastics, bitumen, and so on) and metals (iron/steel, copper, aluminum, and so on) constitute a very small share, of which wood (4.0 t/cap) and steel (3.2 t/cap) are the major contributors. Besides the overall material stock, the spatial distribution of materials within the municipal area can be assessed. This research forms the basis for a resource cadaster, which provides information about gross volume, construction period, utilization, and material composition for each building in Vienna.  相似文献   

13.
Background, aim, and scope  One third of the total housing stock in the Republic of Ireland has been built in 10 years up to and including 2006 and of this approximately 34% was built in the Greater Dublin Area (GDA). Much of the housing was low-density with poor public transport links leading to doubts over its sustainability—particularly in terms of energy use. Although the country is committed to reducing greenhouse gas emissions to 13% above 1990 levels by the period 2008–2012, by 2005, emissions were already 25.4% higher than the baseline and current projections are that this figure will rise to 37% over the period. The residential sector is estimated to contribute to approximately 24.5% of energy-related CO2 emissions. This paper estimates total emissions from residential developments in the GDA constructed between 1997 and 2006. Materials and methods  Carbon dioxide equivalent (CO2) emissions are estimated using a life cycle assessment approach over a 100-year building lifespan and employing process, input–output and hybrid energy techniques. Life cycle stages include: construction, operation, transport, maintenance and demolition. The main data sources include: national population and industry census data, household travel survey data, residential energy performance surveys and national accounts. The GDA was split into four zones each encompassing development at increasing radii from Dublin’s city centre, namely: city centre, suburbs, exurbs and commuter towns. Results  Per capita CO2 life cycle emissions in the GDA were found to be approximately 50–55% greater in the exurbs and commuter towns than in the city centre. Of the five life cycle stages studied, operational energy requirements (predominantly space heating and hot water, but including power) contributed most significantly to emissions (68%), followed by transport (17%), construction (9%) and maintenance/renovation (6%). Discussion  Operating emissions from dwellings in the commuter town and extra-urban zones were almost twice those in the city centre both due to larger dwelling sizes and the predominance of detached and semi-detached dwellings (with large amounts of exposed walls) in the former and the prevalence of smaller apartments in the latter. Car use was most pronounced in the zones furthest from the city centre where per capita emissions were almost twice those of residents in the city centre. Despite their smaller size, the per capita construction CO2 emissions of apartments were approximately one third greater than for low-rise dwellings due to the greater energy intensity of the structure. However, this difference was more than compensated for by the significantly lower operational emissions referred to above. Conclusions  In 2006, recurrent CO2 emissions (operational, transport and maintenance) from dwellings built in the GDA over the ten preceding years were 2,108 kt while construction-related emissions in that year were 1,325 kt giving a total contribution from the residential sector of 3,434 kt CO2/annum—representing 4.9% of national emissions for that year. Had the development policy prescribed ‘city centre’-type development and transport modes, then emissions for the year 2006 would have been 2,892 kt CO2—a reduction of almost 16% over the actual figure. However, in this scenario recurrent emissions would have been reduced to 1,417 kt CO2—a reduction of 33% over actual levels. Recommendations and perspectives  This study supports Irish and international governments’ policies aimed at curbing CO2 emissions from the domestic sector which focus primarily on reducing operational emissions from new and existing housing through design and construction improvements. However, it demonstrates that significant reductions in operational emissions are associated with high-density residential development with modest floor areas. Furthermore, it highlights the scope for transport emissions’ reductions through better spatial planning leading to reduced car travel.  相似文献   

14.
Building stocks constitute enduring components of urban infrastructure systems, but little research exists on their residence time or changing environmental impacts. Using Los Angeles County, California, as a case study, a framework is developed for assessing the changes of building stocks in cities (i.e., a generalizable framework for estimating the construction and deconstruction rates), the residence time of buildings and their materials, and the associated embedded environmental impacts. In Los Angeles, previous land‐use decisions prove not easily reversible, and past building stock investments may continue to constrain the energy performance of buildings. The average age of the building stock has increased steadily since 1920 and more rapidly after the post–World War II construction surge in the 1950s. Buildings will likely endure for 60 years or longer, making this infrastructure a quasi‐permanent investment. The long residence time, combined with the physical limitations on outward growth, suggest that the Los Angeles building stock is unlikely to have substantial spatial expansion in the future. The construction of buildings requires a continuous investment in material, monetary, and energetic resources, resulting in environmental impacts. The long residence time of structures implies a commitment to use and maintain the infrastructure, potentially creating barriers to an urban area's ability to improve energy efficiency. The immotility of buildings, coupled with future environmental goals, indicates that urban areas will be best positioned by instituting strategies that ensure reductions in life cycle (construction, use, and demolition) environmental impacts.  相似文献   

15.
荷兰废弃混凝土回收利用产业发展借鉴   总被引:3,自引:0,他引:3  
荷兰对建筑废弃物尤其是废弃混凝土的回收利用处于国际领先水平。对荷兰废弃混凝土回收利用产业的利益相关者行为和相互关系进行分析,基于波特钻石模型理清荷兰废弃混凝土回收利用产业发展机制。借鉴荷兰发展的经验,结合国情提出促进我国混凝土回收利用产业发展的建议。  相似文献   

16.
Wastewater treatment infrastructure (WWTI) construction in China has entered an accelerated stage of development in recent years as a result of rapid economic growth, urbanization, and the demand for improving water quality. As a result, a large amount of resources and materials will be allocated for the WWTI, and it is particularly important to find ways to reduce resource consumption effectively so that social dematerialization and sustainable development can be achieved. In this study, we employed the dynamic material flow model to estimate the material flows and stocks of WWTIs and the associated carbon dioxide (CO2) emissions through 2050, considering effects of a rise in water consumption, a longer lifetime, and an increased material recycling rate. Our results indicate that material consumption in WWTIs will increase rapidly through 2025 to meet the needs of the increased volume of discharged wastewater as well as to overcome the shortage of existing wastewater treatment plants. In contrast with the moderate effects of rise in water consumption, prolonging the lifetime will greatly reduce material consumption in WWTI construction during the period 2030–2050, and approximately 60% of the total material input will be saved in the medium‐lifetime scenario, compared with the short‐lifetime scenario. Material output and CO2 emissions associated with WWTIs will be reduced by 87% and 37%, respectively, in the medium‐lifetime scenario, compared with the short‐lifetime scenario, under high‐water‐consumption growth. Our results highlight the great importance of pipeline construction and cement consumption in resource consumption associated with WWTI construction in China. Moreover, this study also examined the potential ways to reduce material consumption in WWTI construction in the context of the demand chain, the design, construction, operation and management, and demolition.  相似文献   

17.
In this article we have elaborated a consistent framework for the quantification and evaluation of eco‐efficiency for scenarios for waste treatment of construction and demolition (C&D) waste. Such waste systems will play an increasingly important role in the future, as there has been for many years, and still is, a significant net increase in stock in the built environment. Consequently, there is a need to discuss future waste management strategies, both in terms of growing waste volumes, stricter regulations, and sectorial recycling ambitions, as well as a trend for higher competition and a need for professional and optimized operations within the C&D waste industry. It is within this framework that we develop and analyze models that we believe will be meaningful to the actors in the C&D industry. Here we have outlined a way to quantify future C&D waste generation and have developed realistic scenarios for waste handling based on today's actual practices. We then demonstrate how each scenario is examined with respect to specific and aggregated cost and environmental impact from different end‐of‐life treatment alternatives for major C&D waste fractions. From these results, we have been able to suggest which fractions to prioritize, in order to minimize cost and total environmental impact, as the most eco‐efficient way to achieve an objective of overall system performance.  相似文献   

18.
The construction industry is an important contributor to urban economic development and consumes large volumes of building material that are stocked in cities over long periods. Those stocked spaces store valuable materials that may be available for recovery in the future. Thus quantifying the urban building stock is important for managing construction materials across the building life cycle. This article develops a new approach to urban building material stock analysis (MSA) using land‐use heuristics. Our objective is to characterize buildings to understand materials stocked in place by: (1) developing, validating, and testing a new method for characterizing building stock by land‐use type and (2) quantifying building stock and determining material fractions. We conduct a spatial MSA to quantify materials within a 2.6‐square‐kilometer section of Philadelphia from 2004 to 2012. Data were collected for buildings classified by land‐use type from many sources to create maps of material stock and spatial material intensity. In the spatial MSA, the land‐use type that returned the largest footprint (by percentage) and greatest (number) of buildings were civic/institutional (42%; 147) and residential (23%; 275), respectively. The model was validated for total floor space and the absolute overall error (n = 46; 20%) in 2004 and (n = 47; 24%) in 2012. Typically, commercial and residential land‐use types returned the lowest overall error and weighted error. We present a promising alternative method for characterizing buildings in urban MSA that leverages multiple tools (geographical information systems [GIS], design codes, and building models) and test the method in historic Philadelphia.  相似文献   

19.
A carbon footprint (CF) assessment of Chinese high‐speed railways (HSRs) can help guide further development of the world's longest HSR network. In this research, a hybrid economic input‐output and life cycle assessment (EIO‐LCA) method was applied to estimate the CF of the Beijing‐Shanghai HSR line. Specific CFs were analyzed of different subsystems of the line, different stages of production, and three calculation scopes. Results showed that the annual CF of the Beijing‐Shanghai HSR is increasing, whereas the per‐passenger CF constantly declined between 2011 and 2014. Scope 1 emissions account for an average of 4% of the total annual CF, Scope 2 contribute 71%, and Scope 3 comprise 25%. Among the different stages, operation contributes the largest (71%), followed by construction (20%) and maintenance (9%). In the construction stage, the bridges have the largest CF, followed by trains, and then rails. A trade‐off exists between the increase in carbon emissions due to construction of bridges and the reduction in operation emissions affected by leveling changes in terrain. The Beijing‐Shanghai HSR line has a relatively higher per‐passenger CF than eight other HSR lines, which is largely due to China's coal‐based carbon‐intensive energy mix of electricity generation, high proportion of bridges, higher operating speed, and heavier train body. In the future, cleaner electricity supply options, more efficient raw material production, and improvement of trains are keys to reducing the CF of Chinese HSRs.  相似文献   

20.
A dynamic substance‐flow model is developed to characterize the stocks and flows of cement utilized during the 20th century in the United States, using the generic cement life cycle as a systems boundary. The motivation for estimating historical inventories of cement stocks and flows is to provide accurate estimates of contemporary cement in‐use stocks in U.S. infrastructure and future discards to relevant stakeholders in U.S. infrastructure, such as the federal and state highway administrators, departments of transportation, public and private utilities, and the construction and cement industries. Such information will assist in planning future rehabilitation projects and better life cycle management of infrastructure systems. In the present policy environment of climate negotiations, estimates of in‐use cement infrastructure can provide insights about to what extent built environment can act as a carbon sink over its lifetime. The rate of addition of new stock, its composition, and the repair of existing stock are key determinants of infrastructure sustainability. Based upon a probability of failure approach, a dynamic stock and flow model was developed utilizing three statistical lifetime distributions—Weibull, gamma, and lognormal—for each cement end‐use. The model‐derived estimate of the “in‐use” cement stocks in the United States is in the range of 4.2 to 4.4 billion metric tons (gigatonnes, Gt). This indicates that 82% to 87% of cement utilized during the last century is still in use. On a per capita basis, this is equivalent to 14.3 to 15.0 tonnes of in‐use cement stock per person. The in‐use cement stock per capita has doubled over the last 50 years, although the rate of growth has slowed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号