首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hybridization is a relevant evolutionary mechanism linked to the invasiveness of plant species, but little is known about its effect on enzymatic activities in response to stress. We analyzed the effects of salinity on key mechanistic traits of phosphoenolpyruvate carboxylase (PEPC) enzyme for two hybrid taxa derived from native Spartina maritima (Curtis) Fernald and invasive Spartina densiflora Brongn. in comparison with their parental species. Parental species showed contrasted strategies at the PEPC level to cope with salinity. Spartina maritima showed its physiological optimum at 10 to 40 ppt salinity, with high PEPC activity (per unit leaf soluble protein), in contrast to the lower salinity optimum of 0.5 and 10 ppt for S. densiflora, where highest levels of PEPC apparent specific activity coincided with high light-induced activation of PEPC. Both hybrids showed constant PEPC apparent specific activity from fresh water to hypersalinity and exhibited higher net photosynthesis rates in fresh water than their parents. Spartina maritima × densiflora presented three transgressive PEPC-related traits, being the only taxon able to increase its PEPC activation in darkness at high salinity. Spartina densiflora × maritima showed most PEPC-related traits intermediate between its parents. Inheritance types operating differently in reciprocal hybrids determine key functional traits conditioning their ecological performance.  相似文献   

3.
Four species of exotic cordgrass (Spartina sp.) occur in the San Francisco estuary in addition to the California native Spartina foliosa. Our goal was to map the location and extent of all non-native Spartina in the estuary. Hybrids of S. alterniflora and S. foliosa are by far the most numerous exotic and are spreading rapidly. Radiating from sites of deliberate introduction, S. alterniflora and hybrids now cover ca. 190 ha, mainly in the South and Central Bay. Estimates of rate of aerial increase range from a constant value to an accelerating rate of increase. This could be due to the proliferation of hybrid clones capable of rapid expansion and having superior seed set and siring abilities. The total coverage of 195 ha by hybrids and other exotic cordgrass species is slightly less than 1% of the Bay's tidal mudflats and marshes. Spartina anglica has not spread beyond its original 1970s introduction site. Spartina densiflora has spread to cover over 5 ha at 3 sites in the Central Bay. Spartina patens has expanded from 2 plants in 1970 to 42 plants at one site in Suisun Bay. Spartina seed floats on the tide, giving it the potential to export this invasion throughout the San Francisco estuary, and to estuaries outside of the Golden Gate. We found isolated plants of S. alterniflora and S. densiflora in outer coast estuaries north of the Bay suggesting the likelihood for the San Francisco Bay populations to found others on the Pacific coast.  相似文献   

4.
We analyzed variations in the life span of the invasive cordgrass Spartina densiflora at low marshes of SW Iberian Peninsula, and identified the abiotic factors limiting the plant in the absence of competition. With these objectives, clump survivorship, flowering, and growth of S. densiflora were studied in two natural populations at different low marsh elevations during more than three years, and at a transplant experiment in comparison with the native Spartina maritima. The life spans of both cordgrasses changed depending on small variations of a few centimeters in elevation. S. maritima, which tolerates better than S. densiflora the stressful abiotic environment of lower marshes, showed a significant lower distribution limit for its perennial habit, with survivorship longer than three years (from 1997 to 2000), than the neophyte (+1.57 m SHZ vs. +2.00 m SHZ). S. densiflora clumps flowered before dying at mostly all elevations, showing low relative growth rates. In contrast, clumps of S. maritima, with non-viable seeds, only flowered when they were three years old at higher elevations in the low marsh. Our results have applications for salt marshes bioengineering projects and to prevent S. densiflora from invading European marshes since our data improve the knowledge of its colonization mechanisms through salt marsh zonation and so identify those portions of restored and native marshes most susceptible to invasion due to the establishment of perennial populations.  相似文献   

5.
The South American cordgrass Spartina densiflora is invading European salt marshes getting into contact with the indigenous and endangered low-marsh dominant, Spartina maritima. This work describes the evolution of the plant zonation during 7 years in a marsh of S. maritima invaded by S. densiflora. S. maritima appeared throughout the whole intertidal gradient from 1.72 to 3.33 m over Spanish Hydrographic Zero (SHZ), showing its higher biomasses and shoot densities at low elevations. In contrast, S. densiflora only invaded upper areas (>+2.59 m SHZ) at the centre of circular tussocks of S. maritima. Above-ground biomass of S. maritima dropped drastically at maximum occupation of space by the alien, and its shoot density and above-ground biomass decreased at S. densiflora zone during the study. The competitive potential of S. densiflora was reflected in high above- and below-ground biomass and shoot densities, accompanied by elevated wrack accumulation and the absence of other marsh plants presented together with S. maritima from areas dominated by S. densiflora. S. densiflora altered the native vegetational zonation pattern through the invasion of the centre of S. maritima tussocks; however, the alien invasion may be limited by the presence of the autochthonous cordgrass at lower elevations. Handling editor: Luis Mauricio Bini  相似文献   

6.
Plant hybridization can lead to the evolution of invasiveness. We wished to determine whether hybrids between the largely self-sterile Atlantic Spartina alterniflora and California native S. foliosa had evolved self-fertility during their ca 30 year existence in San Francisco Bay, CA. In pollination experiments we found that neither of the parental species was self-fertile, nor were early generation hybrids. A large fraction of later generation hybrids were profusely self-fertile. Inbreeding depression was high in the parental species and early generation hybrids, but was much reduced in later generation hybrids—some even showed outbreeding depression. We found that populations of later generation hybrids and their seedling progeny were almost two-fold more homozygous than early generation hybrids, consistent with the evidence of increased selfing shown by our parentage analyses based upon 17 microsatellite markers. We posit that evolved self-fertility has contributed substantially to the rapid spread of hybrid Spartina in San Francisco Bay.  相似文献   

7.
Vascular plants in salt marshes strongly influence processes of heavy metal accumulation. Many studies have focused on this issue; however, there is a lack of information regarding the effects of plants on the distribution of certain poorly studied metals, such as Co, Cr, and Ni. The aim of this study was to comparatively evaluate the capability of Spartina densiflora Brongn. and Spartina maritima (Curtis) Fernald, to accumulate Co, Cr, and Ni and influence the sediment composition around their roots, investigating whether the observed behavior can change with different levels of sediment pollution. Concentrations of Co, Cr, and Ni were determined in tissues of S. densiflora and S. maritima and in sediments and rhizosediments from the Odiel and Tinto marshes (SW Spain), one of the estuaries most polluted by heavy metals in the world. Concentrations of Co, Cr, and Ni in the belowground tissues of both Spartina species were higher than those in aboveground tissues in all sites sampled. Both species showed potential for phytostabilization of Co, possibly by promoting the formation of high amounts of Fe-oxides in the rhizosphere, which can act to retain the metal within the sediment around the roots. In addition, both Spartina species were found to accumulate Co in their roots, thereby avoiding the translocation of this metal to photosynthetic tissues. At the Tinto marsh, there were no differences recorded in metal levels between sediments and rhizosediments of both species, a fact that could be explained by the extremely high background levels of metals at this site, which may impair the ability of the plant to alter the chemistry of the sediment in contact with the roots. The potential for the immobilization of a large amount of Co in the soil, exhibited by S. densiflora and S. maritima, indicates that both species could be highly useful in the phytostabilization of Co contaminated environments.  相似文献   

8.
Sedimentary abiotic environment, and concentration and stock of nine metals were analyzed in vegetation and sediments to evaluate the phytoremediation capacity of restored Spartina maritima prairies in the highly polluted Odiel Marshes (SW Iberian Peninsula). Samples were collected in two 10 –m long rows parallel to the tidal line at two sediments depths (0–2 cm and 2–20 cm). Metal concentrations were measured by inductively coupled plasma spectroscopy. Iron, aluminum, copper, and zinc were the most concentrated metals. Every metal, except nickel, showed higher concentration in the root zone than at the sediment surface, with values as high as ca. 70 g Fe kg–1. The highest metal concentrations in S. maritima tissues were recorded in its roots (maximum for iron in Spartina roots: 4160.2 ± 945.3 mg kg–1). Concentrations of aluminum and iron in leaves and roots were higher than in superficial sediments. Rhizosediments showed higher concentrations of every metal than plant tissues, except for nickel. Sediment metal stock in the first 20 cm deep was ca. 170.89 t ha–1. Restored S. maritima prairies, with relative cover of 62 ± 6%, accumulated ca. 22 kg metals ha–1. Our results show S. maritima to be an useful biotool for phytoremediation projects in European salt marshes.  相似文献   

9.
10.
Ascomycetous fungi play an important role in the early stages of decomposition of Spartina alterniflora, but their role in the decomposition of other Spartina species has not been investigated. Here we use fingerprint (terminal restriction fragment length polymorphism) and phylogenetic analyses of the 18S to 28S internal transcribed spacer region to compare the composition of the ascomycete fungal communities on early decay blades of Spartina species (Spartina alterniflora, Spartina densiflora, Spartina foliosa, and a hybrid (S. alterniflora × S. foliosa)) collected from three salt marshes in San Francisco Bay and one in Tomales Bay, California, USA. Phaeosphaeria spartinicola was found on all samples collected and was often dominant. Two other ascomycetes, Phaeosphaeria halima and Mycosphaerella sp. strain 2, were also common. These three species are the same ascomycetes previously identified as the dominant fungal decomposers on S. alterniflora on the east coast. Ascomycetes appeared to exhibit varying degrees of host specificity, demonstrated by grouping patterns on phylogenetic trees. Neither the exotic S. alterniflora nor the hybrid supported fungal flora different from that of the native S. foliosa. However, S. densiflora had a significantly different fungal community than the other species, and hosted at least two unique ascomycetes. Significant differences in the fungal decomposer communities were also detected within species (two clones of S. foliosa), but these were minor and may be due to morphological differences among the plants.  相似文献   

11.
12.
The study of hybrid courtship songs and the behavioral responses of hybrids and parental individuals to hybrid songs can be useful in understanding the origin of reproductive isolation among species that differ mainly in their courtship songs. Here we test the hypotheses (a) that hybrid lacewings prefer hybrid songs to either of the parental songs from a cross betweenChrysoperla plorabunda andC. johnsoni, and (b) that parental individuals prefer their own song over those of hybrids. Analysis of songs showed that most features of hybrid songs are intermediate between the two parents. Hybrids organize their songs with a series of simple volleys like those ofC. plorabunda. Female hybrids from two reciprocal crosses and females and males of the parental species were presented with choices of hybrid and parental songs. Hybrids responded more to recordings of hybrid songs than to recordings ofC. plorabunda but did not differ in the responses given toC. johnsoni and hybrid songs. In contrast, males and females of both parental lines preferred to duet with recordings of their own song types and did not respond to hybrid songs. Our results demonstrate that hybrids would be at a disadvantage in nature, because neitherC. plorabunda norC. johnsoni will respond to their songs.  相似文献   

13.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

14.
Traditional morphological studies need to be complemented with modern genetic methods to facilitate the identification of hybrids. By using a combination of landmark‐based techniques and microsatellite markers, natural hybridization was investigated between the cyprinids Abramis brama (L.) and Blicca bjoerkna (L.) and their hybrids. Geometric morphometrics revealed significant differences in body shape between A. brama, B. bjoerkna, and hybrids. Hybrids were of intermediate body shape with a tendency of being more like A. brama. Genetic differentiation was found between both parental species and their hybrids. However, hybrids revealed a higher genetical similarity with A. brama. Based on sequencing of the mitochondrial ATP synthase subunit 6 and 8 region a clear split was found between the two sibling species. Seventeen out of 19 hybrid specimens clustered within the A. brama clade. Data indicate that hybridization between A. brama and B. bjoerkna is mainly unidirectional and has not yet resulted in fusion of the two parental gene pools. Genetic integrity is maintained in B. bjoerkna, but F1 hybrid backcrosses might lead to introgression into the genepool of A. brama.  相似文献   

15.
Biological invasion is a global environmental issue. Hybridization is considered a stimulus for evolution of invasiveness. It is thus essential to evaluate the invasive potential of new hybrids before management strategies are designed and implemented for them, especially, using performance‐related traits. Comparing growth and physiological traits between invasive species and their non‐invasive congeners is an effective way to identify invasive traits and to predict the invasive potential of species. However, few studies have evaluated the invasive potential of new hybrids by comparative analysis of these traits. We examined the invasive potential of a recently confirmed natural hybrid between the invasive Sphagneticola trilobata, one of the 100 worst invasive species worldwide, and its indigenous congener S. calendulacea. We compared growth and physiological responses of the hybrid and its parental species to different light conditions (open, natural light; shade, 25% of natural light) by conducting a common garden experiment. We then used discriminant analysis to identify those growth and physiological traits that are most different between the invasive and the non‐invasive species. We found that S. trilobata had a higher growth rate, photosynthetic capacity and resource use efficiency than S. calendulacea in both the open and the shade environments, and the hybrid was more similar to S. trilobata than to S. calendulacea in these traits. Discriminant analysis suggested that the hybrid is more similar to S. trilobata than to S. calendulacea for a number of traits associated with performance, and that the hybrids had less invasive potential in the shade than in the open environment. These results indicate that the hybrid has a high invasive potential and could be an efficient invader in both open and shade environments.  相似文献   

16.
The volatile composition of needles from three F1 hard pine hybrids produced by the controlled hybridization and their parental species were researched with gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) in order to explore the utility of terpenes in hybrid identification (their differentiation from the parental species) as well as confirmation of hybridity. The analysed hybrids were: 1. Pinus nigra J. F. Arnold × Pinus sylvestris L. (= nisy), 2. P. nigra × Pinus densiflora Siebold et Zucc. (= nide) and 3. P. nigra × Pinus thunbergiana Franco (= nith). A total of 55 compounds were identified. All identified compounds were terpenes, except trans-2-hexenal.Three analysed F1 hybrids showed the same qualitative pattern of the needle volatile composition as their parental species. However, there were quantitative differences in several major terpenes. The volatile composition of the needles from the hybrids nisy were equally similar to both parents, the hybrids nide were more similar to the female parent (P. nigra), whereas the hybrids nith were more similar to the male parent (P. thunbergiana). According to the content of germacrene D, as the specific component of P. nigra (female parent of the three analysed F1 hybrids), all hybrids were intermediary in relation to the parental species. The content of Δ-3-carene (the specific component of P. sylvestris) in the hybrids nisy was also intermediary. The hybrids nide had a higher content of thunbergol (specific component of P. densiflora) than the other analysed hybrids. In view of the content of β-pinene, the specific component of P. thunbergiana, the hybrids nith were intermediary to the parental species and that content was considerably higher than in the other analysed hybrids. The intermediary quality of F1 hybrids for these specific components in relation to the parental species confirms their hybrid character.The needle volatile composition analysis as well as the previous morphometric analysis confirm the hybrid character of three F1 hybrids, whose female parent is P. nigra, and male parents are P. sylvestris, P. densiflora, i.e. P. thunbergiana.  相似文献   

17.
Studies examining the impacts of introduced species on food webs often focus on the top-down effects of introduced predators. However, marine and estuarine systems have been invaded by plants that have the potential to alter carbon and nitrogen sources available to consumers. In San Francisco Bay, California, USA, hybridized cordgrass Spartina alterniflora × foliosa is adding C4 carbon biomass to this system. We used natural abundances of stable isotopes of carbon and nitrogen to examine whether infaunal and epifaunal food webs reflected the large detrital input from hybrid Spartina. We compared stable isotope signatures among macrofaunal invertebrate consumers collected in hybrid Spartina, native S. foliosa, or unvegetated mudflats. We found no additional shift towards hybrid Spartina in hybrid areas. Structural changes brought about by an invasive ecosystem engineer, specifically increased biomass and detrital inputs, do not necessarily result in its increased incorporation into the food web.  相似文献   

18.
Aquatic plants of the genus Ruppia inhabit some of the most threatened habitats in the world, such as coastal lagoons and inland saline to brackish waters where their meadows play several key roles. The evolutionary history of this genus has been affected by the processes of hybridization, polyploidization, and vicariance, which have resulted in uncertainty regarding the number of species. In the present study, we apply microsatellite markers for the identification, genetic characterization, and detection of hybridization events among populations of putative Ruppia species found in the southern Iberian Peninsula, with the exception of a clearly distinct species, the diploid Ruppia maritima. Microsatellite markers group the populations into genetically distinct entities that are not coincident with geographical location and contain unique diagnostic alleles. These results support the interpretation of these entities as distinct species: designated here as (1) Ruppia drepanensis, (2) Ruppia cf. maritima, and (3) Ruppia cirrhosa. A fourth distinct genetic entity was identified as a putative hybrid between R. cf. maritima and R. cirrhosa because it contained a mixture of microsatellite alleles that are otherwise unique to these putative species. Hence, our analyses were able to discriminate among different genetic entities of Ruppia and, by adding multilocus nuclear markers, we confirm hybridization as an important process of speciation within the genus. In addition, careful taxonomic curation of the samples enabled us to determine the genotypic and genetic diversity and differentiation among populations of each putative Ruppia species. This will be important for identifying diversity hotspots and evaluating patterns of population genetic connectivity.  相似文献   

19.
Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91 % of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67 %). Non-LTR retrotransposons represent 0.75 %, DNA transposons 0.99 %, whereas small RNA, simple repeats and low-complexity sequences account for 1.38 % of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1 % of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6 % of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.  相似文献   

20.
Hybrid Zones Between Two European Oaks: a Plant Community Approach   总被引:1,自引:1,他引:0  
Phenomena of hybridization can affect the ecology and evolution of the species involved in the process, as well as their communities. Although numerous papers focus upon the problem of taxonomy, few of these have attempted to study hybrid zones in relation to the analysis of their communities. On the Iberian Peninsula, hybridization phenomena among different oak species are frequent. It is, however, between Quercus faginea Lam. and Quercus pubescens Willd. where the most noteworthy hybridization phenomenon occurs. In this respect, we are familiar with the existence of different introgression levels but we are unaware of whether these hybrids are the transitory result of the interspecific genetic flow or whether these are maintained by means of extrinsic selection processes. Study of plant communities’ flora and environment might shed light upon this issue. Comparison between plant communities dominated by one of the parental species and those dominated by individuals of hybrid origin might enable us to establish the presence or absence of an environment that is potentially selective in favour of the hybrids. Thus the possible existence of extrinsic selection. Furthermore, this information will help us to understand plant community distribution in an area␣that is difficult to interpret. To this purpose, we used multivariate ordination techniques (DCA and CCA) based upon a total of 395 floristic releves covering the whole range of the parental species on the Iberian Peninsula and upon climatic and edaphic variables for each of these releves. We also compared the groups obtained in relation to floristic similarity (Jaccard index), richness and diversity (Shannon–Weaver index). Forests associated with Quercus pubescens are related to heavy summer precipitation, whereas Quercus faginea forests correspond to lower values of this variable and higher ones for continentality. Between both formations, there is a broad hybrid zone, with diffused borders that are related to an environmental gradient of Mediterranean influence. In this region, two types of forest communities were distinguished, which enabled us to divide the hybrid zones into two territories. Our results allowed us to locate the hybrid zone in an ecotone. The differentiation between habitats appears to indicate models of ecological selection. These models require, by definition, the presence of an environmental gradient between the parental zones. We are, however, aware of the need for future experiments in order to establish whether the hybrids are better adapted than the parental species. Only with availability of all this information can intrinsic selection be rejected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号