首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  To expose bacteria to anolyte and subsequently investigate the effect of anolyte on the protein profiles of treated bacteria.
Methods and Results:  Proteins were extracted from bacteria treated with different concentrations of anolyte and analysed using SDS-PAGE. Fewer and more faint protein bands were observed for concentrated halide anolyte treated bacteria when compared to untreated bacteria while extra protein bands were observed for bacteria exposed to dilute concentrations.
Conclusions:  The undiluted and the 10−1 dilution of halide derived anolyte was effective in killing the test bacteria. Anolyte caused bacterial death by complete destruction of proteins or by causing oxidative stress which resulted in protein fragmentation.
Significance and Impact of the Study:  The results of this study provide information on the antimicrobial mechanism of anolyte on other bacteria for which the information is currently unavailable.  相似文献   

2.
AIM: To evaluate the efficacy of electrochemically activated solution (ECASOL) in decontaminating Bacillus anthracis Ames and Vollum 1B spores, with and without changing the source water hardness and final ECASOL pH. METHODS AND RESULTS: Five different ECASOL formulations were generated, in which the source water hardness and final ECASOL pH were varied, resulting in cases where significant changes in free available chlorine (FAC) and oxidative-reduction potential (ORP) were observed. B. anthracis Ames and Vollum 1B spores were suspended in the various ECASOL formulations for 30 min, and decontamination efficacy was determined; calcium hypochlorite [5% high-test hypochlorite (HTH)] was used as a positive control. The five different ECASOL formulations yielded mean FAC levels ranging from 305 to 464 ppm, and mean ORP levels ranging from +826 to +1000 mV. Exposure to all the ECASOL formulations and 5% HTH resulted in >or=7.0 log reductions in both B. anthracis Ames and Vollum 1B spores. CONCLUSIONS: The present testing demonstrated that ECASOL with a minimum of c. 300-ppm FAC levels and +800-mV ORP inactivated the B. anthracis spores in suspension, similar to 5% HTH. Significance and Impact of the Study: These results provide information for decontaminating B. anthracis Ames and Vollum 1B spores in suspension using ECASOL.  相似文献   

3.
Aims:  To evaluate disinfectants against Salmonella under conditions relevant for the feed industry.
Materials and Results:  A survey on the use of disinfectants in feed industry showed that a range of different types was used. Nine disinfectants, reflecting the most commonly used active ingredients, were tested for bactericidal activity on Salmonella isolated from the feed industry. All disinfectants were efficient against Salmonella in suspension. The bactericidal effect varied considerably between different types of active compounds on bacteria dried on surfaces or grown as biofilm. Tenside-based disinfectants and hypochlorite were found to have low bactericidal activity and the efficiency was significantly reduced when the ratio of amount disinfectant per cell decreased. It was shown that concentrations of 70–80% ethanol were effective against Salmonella. Among the disinfectants tested a product containing 70% ethanol was most efficient followed by Virkon S.
Conclusions:  Many disinfectants had low bactericidal activity against Salmonella at surfaces while Virkon S and a product containing 70% ethanol were most effective. Another advantage of ethanol-based disinfectants is evaporation of ethanol, resulting in low residual water after use.
Significance and Impact of the Study:  Use of the disinfectants found to be efficient against surface associated Salmonella , may assist the industry in combating Salmonella .  相似文献   

4.
Bacterial endospores (spores) have a higher intrinsic resistance to microbicides as compared to other microbial forms, most likely due to their impermeable outer layers and low water content. Though structural differences between the spores of various bacterial species may account for observed variations in their resistance to microbicides, flaws in methods for testing the sporicidal activity of microbicides often exaggerate the differences. This has major implications when considering the selection of one or more surrogates to assess microbicides against clinically relevant spore‐formers such as Clostridium difficile. The mounting significance of Cl. difficile as a pathogen is leading to a corresponding increase in the number of commercially available microbicidal formulations claiming activity against its spores without proper differentiation between the product's sporistatic and sporicidal actions. In this review we critically assess the situation and the implications of product claims on the field use of microbicidal products.  相似文献   

5.
6.
7.
8.
The biological activity of the catholyte and anolyte of double distilled water was studied in experiments on the germination of wheat grains in the period from March to May. The activity of the solutions, which was characterized by a growth index, was high early in this period, then decreased almost to zero in the middle of the period, and then increased to about the initial value by the end of the period. Throughout, the efficiency of the anolyte of double distilled water generally exceeded the efficiency of the catholyte. Early and late in the period, the stimulatory effect of the anolyte exceeded that of the catholyte by a factor of 5–5.5. The changes in the biological activity of the catholyte and anolyte of double distilled water were also compared with the changes in the biological activity of the catholyte of nutrient medium M9. The stimulatory effect of the catholyte of the nutrient medium was evaluated from the change in the growth of E. coli cells. Early in the period at a cultivation temperature of 20°C, the stimulatory effect determined from the increase in the optical density of the cell suspension in the experiment with respect to a reference value was 55–60%. Next, the stimulatory effect decreased almost to zero in the middle of the period and increased to approximately initial value by the end of the period. It was assumed that the physicochemical mechanisms of action of the catholyte and anolyte of double distilled water on the wheat seed germination and of the catholyte of the nutrient medium on E. coli cell growth are of different nature.  相似文献   

9.
Aims: Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine‐infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. Methods and Results: The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony‐forming units in vitro in a traditional plate‐based assay and by a reduction in bacterial titres in planta as measured by quantitative real‐time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Agvitis, a significant reduction in titre was only observed in a subset of plants. Conclusions: The titres of both grapevine‐infecting bacterial pathogens were reduced in an in vitro assay and for Xampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance‐enhancing element to additional pathogens and in a novel plant species. Significance and Impact of the Study: D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started.  相似文献   

10.
Carvacrol has been recognized as an efficient growth inhibitor of food pathogens. However, carvacrol oil is poorly water-soluble and can be oxidized, decomposed or evaporated when exposed to the air, light, or heat. To overcome these limitations, a carvacrol nanoemulsion was developed and its antimicrobial activity against food pathogens evaluated in this study. The nanoemulsion containing 3% carvacrol oil, 9% surfactants (HLB 11) and 88% water, presented good stability over a period of 90 days. In general, the carvacrol nanoemulsion (MIC: 256 µg ml−1 for E. coli and Salmonella spp., 128 µg ml−1 for Staphylococcus aureus and Pseudomonas aeruginosa) exhibited improved antimicrobial activity compared to the free oil. The carvacrol nanoemulsion additionally displayed bactericidal activity against Escherichia coli, P. aeruginosa and Salmonella spp. Therefore, the results of this study indicated that carvacrol oil nanoemulsions can potentially be incorporated into food formulations, wherein their efficacy for the prevention and control of microbial growth could be evaluated.  相似文献   

11.
12.
Aims: Having and executing a well-defined and validated sampling protocol is critical following a purposeful release of a biological agent for response and recovery activities, for clinical and epidemiological analysis and for forensic purposes. The objective of this study was to address the need for validated sampling and analysis methods called out by the General Accounting Office and others to systematically compare the collection efficiency of various swabs and wipes for collection of bacterial endospores from five different surfaces, both porous and nonporous. This study was also designed to test the collection and extraction solutions used for endospore recovery from swabs and wipes. Methods and Results: Eight collection tools, five swabs and three wipes, were used. Three collection/preservation solutions were evaluated: an ink jet aerosol generator was used to apply Bacillus subtilis endospores to five porous and nonporous surfaces. The collection efficiencies of the swabs and wipes were compared using a statistical multiple comparison analysis. Conclusions: The ScottPure® wipe had the highest collection efficiency and phosphate-buffered saline (PBST) with 0·3% Tween was the best collection solution of those tested. Significance and Impact of the Study: Validated sampling for potential biological warfare is of significant importance and this study answered some relevant questions.  相似文献   

13.
Aims:  To improve the efficacy of erythromycin, a hydrophobic antibiotic, against multiple antibiotic-resistant gram-negative bacterial pathogens by enhancing their outer membrane permeability.
Methods and Results:  Fifty-one nonrepeat gram-negative bacterial pathogens of various genera, resistant to multiple antibiotics, including erythromycin, were selected by disc agar diffusion tests. The amphiphilic cationic steroid antibiotic, Ceragenin CSA-13, a potent permeabilizer of bacterial outer membranes, reduced the minimum inhibitory concentration of erythromycin in 92% of the bacterial pathogens selected for the test, when supplemented with erythromycin. A synergistic effect of Ceragenin CSA-13 and erythromycin in combination was also observed. Spectrofluorimetric study confirmed that Ceragenin CSA-13 acts by depolarizing the bacterial outer membrane. The toxicity of Ceragenin CSA-13 was evaluated to be insignificant by measuring 'median lethal dose' (LD50) on mouse model.
Conclusions:  Ceragenin CSA-13 may be useful as an agent to make erythromycin effective against infections caused by multiple antibiotic resistant gram-negative bacteria.
Significance and Impact of the Study:  The outcome of the study suggests erythromycin–Ceragenin combination as a new approach to overcome the problem associated with the rapid emergence of multi-drug-resistant pathogens. The insignificant toxicity of Ceragenin CSA-13, as found, supports the possibility of the application of this compound for human therapeutics.  相似文献   

14.
15.
16.
17.
18.
doi: 10.1111/j.1741‐2358.2010.00400.x
Evaluation of the efficacy of chemical disinfectants for disinfection of heat‐polymerised acrylic resin Objective: This study evaluated the efficacy of disinfectants on the internal aspect of heat‐polymerised acrylic resin contaminated with microbial strains. Background: Dentures absorb oral fluids and become contaminated by different microorganisms. Methods: Two hundred and fifty rectangular specimens were made of heat‐polymerised acrylic resin, and then divided into five groups corresponding to the microbial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, S. mutans and Enterococcus faecalis). After contamination, the specimens were immersed in 1 and 2% sodium hypochlorite and 2% glutaraldehyde for periods of 5, 10 and 15 min. The specimens were placed into tubes containing different broths and incubated at 35°C and then visually analysed. Turbidity in the medium indicated microbial growth. The Fisher’s exact test was used in the analysis of the results. Results: The strain E. faecalis was the most resistant to the disinfectant solutions, and among them, glutaraldehyde was more effective than 2 and 1% hypochlorite for disinfection for 5 min; in the 10‐min period there were no differences between the disinfectants. In 15 min of immersion, 1% hypochlorite and glutaraldehyde were more effective than 2% hypochlorite. Conclusions: Disinfection for 10 min with 1% hypochlorite and glutaraldehyde is effective in disinfecting the internal aspect of heat‐polymerised acrylic resin.  相似文献   

19.
Burkholderia pseudomallei is a serum‐resistant Gram‐negative bacterium capable of causing disseminated infections with metastatic complications. However, its interaction with nonphagocytic cells is poorly understood. We observed that exposure of B. pseudomallei and the closely related yet avirulent B. thailandensis to human plasma increased epithelial cell invasion by >20 fold. Enhanced invasion was primarily driven by a plasma factor, which required a functional complement cascade, but surprisingly, was downstream of C3 mediated opsonisation. Receptor blocking studies with RGD‐domain containing peptide and αVβ3 blocking antibody identified complement‐activated vitronectin as the factor facilitating this invasion. Plasma treatment led to the recruitment of vitronectin onto the bacterial surface, and its conversion into the active conformation. Activation of vitronectin, as well as increased invasion, required the complement pathway and was not observed in C3 or C5 depleted serum. The integrin inhibitor cilengitide, currently in clinical trials as an anti‐angiogenesis agent, suppresses plasma‐mediated Burkholderia invasion by ~95%, along with a downstream reduction in intracellular bacterial replication. We extend these findings to serum‐resistant Klebsiella pneumoniae as well. Thus, the potential use of commercially available integrin inhibitors as anti‐infective agents during selective bacterial infections should be explored.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号