首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growing concerns about energy security and climate change have prompted interest in Australia and worldwide to look for alternatives of fossil fuels. Among the renewable fuel sources, biofuels are one such alternative that have received unprecedented attention in the past decade. Cellulosic biofuels, derived from agricultural and wood biomass, could potentially increase Australia's oil self‐sufficiency. In this study, we carry out a hybrid life‐cycle assessment (LCA) of a future cellulose‐refining industry located in the Green Triangle region of South Australia. We assess both the upstream and downstream refining stages, and consider as well the life‐cycle effects occurring in conventional industries displaced by the proposed biofuel supply chains. We improve on conventional LCA method by utilising multi‐region input–output (IO) analysis that allows a comprehensive appraisal of the industry's supply chains. Using IO‐based hybrid LCA, we evaluate the social, economic and environmental impacts of lignocellulosic biofuel production. In particular, we evaluate the employment, economic stimulus, energy consumption and greenhouse gas impacts of the biofuel supply chain and also quantify the loss in economic activity and employment in the paper, pulp and paperboard industry resulting from the diversion of forestry biomass to biofuel production. Our results reveal that the loss in economic activity and employment will only account for 10% of the new jobs and additional stimulus generated in the economy. Lignocellulosic biofuel production will create significant new jobs and enhance productivity and economic growth by initiating the growth of new industries in the economy. The energy return on investment for cellulosic biofuel production lies between 2.7 and 5.2, depending on the type of forestry feedstock and the travel distance between the feedstock industry and the cellulose refinery. Furthermore, the biofuel industry will be a net carbon sequester.  相似文献   

2.
Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near‐term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site‐level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue‐derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover‐derived biofuels. Using the most representative methodology for assessing long‐term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near‐term US cellulosic biofuel demand, could be met under common no‐till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no‐till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic biofuel production.  相似文献   

3.
Many countries see biofuels as a replacement to fossil fuels to mitigate climate change. Nevertheless, some concerns remain about the overall benefits of biofuels policies. More comprehensive tools seem required to evaluate indirect effects of biofuel policies. This article proposes a method to evaluate large‐scale biofuel policies that is based on life cycle assessment (LCA), environmental extensions of input‐output (I‐O) tables, and a general equilibrium model. The method enables the assessment of indirect environmental effects of biofuels policies, including land‐use changes (LUCs), in the context of economic and demographic growth. The method is illustrated with a case study involving two scenarios. The first one describes the evolution of the world economy from 2006 to 2020 under business as usual (BAU) conditions (including demographic and dietary preferences changes), and the second integrates biofuel policies in the United States and the European Union (EU). Results show that the biofuel scenario, originally designed to mitigate climate change, results in more greenhouse gas emissions when compared to the BAU scenario. This is mainly due to emissions associated with global LUCs. The case study shows that the method enables a broader consideration for environmental effects of biofuel policies than usual LCA: Global economic variations calculated by a general equilibrium economic model and LUC emissions can be evaluated. More work is needed, however, to include new biofuel production technologies and reduce the uncertainty of the method.  相似文献   

4.
The implementation of measures to increase productivity and resource efficiency in food and bioenergy chains as well as to more sustainably manage land use can significantly increase the biofuel production potential while limiting the risk of causing indirect land use change (ILUC). However, the application of these measures may influence the greenhouse gas (GHG) balance and other environmental impacts of agricultural and biofuel production. This study applies a novel, integrated approach to assess the environmental impacts of agricultural and biofuel production for three ILUC mitigation scenarios, representing a low, medium and high miscanthus‐based ethanol production potential, and for three agricultural intensification pathways in terms of sustainability in Lublin province in 2020. Generally, the ILUC mitigation scenarios attain lower net annual emissions compared to a baseline scenario that excludes ILUC mitigation and bioethanol production. However, the reduction potential significantly depends on the intensification pathway considered. For example, in the moderate ILUC mitigation scenario, the net annual GHG emissions in the case study are 2.3 MtCO2‐eq yr?1 (1.8 tCO2‐eq ha?1 yr?1) for conventional intensification and ?0.8 MtCO2‐eq yr?1 (?0.6 tCO2‐eq ha?1 yr?1) for sustainable intensification, compared to 3.0 MtCO2‐eq yr?1 (2.3 tCO2‐eq ha?1 yr?1) in the baseline scenario. In addition, the intensification pathway is found to be more influential for the GHG balance than the ILUC mitigation scenario, indicating the importance of how agricultural intensification is implemented in practice. Furthermore, when the net emissions are included in the assessment of GHG emissions from bioenergy, the ILUC mitigation scenarios often abate GHG emissions compared to gasoline. But sustainable intensification is required to attain GHG abatement potentials of 90% or higher. A qualitative assessment of the impacts on biodiversity, water quantity and quality, soil quality and air quality also emphasizes the importance of sustainable intensification.  相似文献   

5.
The boreal forests of Scandinavia offer a considerable resource base, and use of the resource for the production of less carbon-intensive alternative transport fuel is one strategy being considered in Norway. Here, we quantify the resource potential and investigate the environmental implications of wood-based transportation relative to a fossil reference system for a specific region in Norway. We apply a well-to-wheel life cycle assessment to evaluate four E85 production system designs based on two distinct wood-to-ethanol conversion technologies. We form best and worst case scenarios to assess the sensitivity of impact results through the adjustment of key parameters, such as biomass-to-ethanol conversion efficiency and upstream biomass transport distance. Depending on the system design, global warming emission reductions of 46% to 68% per-MJ-gasoline avoided can be realized in the region, along with reductions in most of the other environmental impact categories considered. We find that the region's surplus forest-bioenergy resources are vast; use for the production of bioethanol today would have resulted in the displacement of 55% to 68% of the region's gasoline-based global warming emission—or 6% to 8% of Norway's total global warming emissions associated with road transportation.  相似文献   

6.
Consequential life cycle assessment (CLCA) has emerged as a tool for estimating environmental impacts of changes in product systems that go beyond physical relationships accounted for in attributional LCA (ALCA). This study builds on recent efforts to use more complex economic models for policy‐based CLCA. A partial market equilibrium (PME) model, called the U.S. Forest Products Module (USFPM), is combined with LCA to analyze an energy demand scenario in which wood use increases 400 million cubic meters in the United States for ethanol production. Several types of indirect economic and environmental impacts are identified and estimated using USFPM‐LCA. A key finding is that if wood use for biofuels increases to high levels and mill residue is used for biofuels and replaced by natural gas for heat and power in forest products mills, then the increased greenhouse gas emissions from natural gas could offset reductions obtained by substituting biofuels for gasoline. Such high levels of biofuel demand, however, appear to have relatively low environmental impacts across related forest product sectors.  相似文献   

7.
Second generation biofuels, like cellulosic ethanol, have potential as important energy sources that can lower fossil fuel carbon emissions without affecting global food commodity prices. Agricultural crop residues, especially maize, have been proposed for use as biofuel, but the net greenhouse warming effect of the gained fossil fuel carbon offset needs to account for any ecosystem carbon losses caused by the large‐scale maize residue removal. Using differential 13C isotopic ratios between residue and soil in an incubation experiment, we found that removal of residue increased soil organic matter decomposition by an average of 16%, or 540–800 kg carbon ha?1. Thus, removal of residue for biofuel production can have a hidden carbon cost, reducing potential greenhouse gas benefits. Accurate net carbon accounting of cellulosic biofuel needs to include not only fossil fuel savings from use of the residue, but also any declines in soil carbon caused directly and indirectly by residue removal.  相似文献   

8.
The biofuel industry is rapidly growing because of increasing energy demand and diminishing petroleum reserves on a global scale. A multitude of biomass resources have been investigated, with high-yielding, perennial feedstocks showing the greatest potential for utilization as advanced biofuels. Government policy and economic drivers have promoted the development and commercialization of biofuel feedstocks, conversion technologies, and supply chain logistics. Research and regulations have focused on the environmental consequences of biofuels, greatly promoting systems that reduce greenhouse gas emissions and life-cycle impacts. Numerous biofuel refineries using lignocellulosic feedstocks and biomass-based triglycerides are either in production or pre-commercial development phases. Leading candidate energy crops have been identified, yet require additional efforts to realize their full potential. Advanced biofuels, complementing conventional biofuels and other renewable energy sources such as wind and solar, provide the means to substantially displace humanity’s reliance on petroleum-based energy.  相似文献   

9.
Biofuel provides a globally significant opportunity to reduce fossil fuel dependence; however, its sustainability can only be meaningfully explored for individual cases. It depends on multiple considerations including: life cycle greenhouse gas emissions, air quality impacts, food versus fuel trade‐offs, biodiversity impacts of land use change and socio‐economic impacts of energy transitions. One solution that may address many of these issues is local production of biofuel on non‐agricultural land. Urban areas drive global change, for example, they are responsible for 70% of global energy use, but are largely ignored in their resource production potential; however, underused urban greenspaces could be utilized for biofuel production near the point of consumption. This could avoid food versus fuel land conflicts in agricultural land and long‐distance transport costs, provide ecosystem service benefits to urban dwellers and increase the sustainability and resilience of cities and towns. Here, we use a Geographic Information System to identify urban greenspaces suitable for biofuel production, using exclusion criteria, in 10 UK cities. We then model production potential of three different biofuels: Miscanthus grass, short rotation coppice (SRC) willow and SRC poplar, within the greenspaces identified and extrapolate up to a UK‐scale. We demonstrate that approximately 10% of urban greenspace (3% of built‐up land) is potentially suitable for biofuel production. We estimate the potential of this to meet energy demand through heat generation, electricity and combined heat and power (CHP) operations. Our findings show that, if fully utilized, urban biofuel production could meet nearly a fifth of demand for biomass in CHP systems in the United Kingdom's climate compatible energy scenarios by 2030, with potentially similar implications for other comparable countries and regions.  相似文献   

10.
The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Mitigation benefits through the use of forest products are affected by product life cycles, which determine the duration of carbon storage in wood products and substitution benefits where emissions are avoided using wood products instead of other emissions‐intensive building products and energy fuels. Here we determined displacement factors for wood substitution in the built environment and bioenergy at the national level in Canada. For solid wood products, we compiled a basket of end‐use products and determined the reduction in emissions for two functionally equivalent products: a more wood‐intensive product vs. a less wood‐intensive one. Avoided emissions for end‐use products basket were weighted by Canadian consumption statistics to reflect national wood uses, and avoided emissions were further partitioned into displacement factors for sawnwood and panels. We also examined two bioenergy feedstock scenarios (constant supply and constrained supply) to estimate displacement factors for bioenergy using an optimized selection of bioenergy facilities which maximized avoided emissions from fossil fuels. Results demonstrated that the average displacement factors were found to be similar: product displacement factors were 0.54 tC displaced per tC of used for sawnwood and 0.45 tC tC?1 for panels; energy displacement factors for the two feedstock scenarios were 0.47 tC tC?1 for the constant supply and 0.89 tC tC?1 for the constrained supply. However, there was a wide range of substitution impacts. The greatest avoided emissions occurred when wood was substituted for steel and concrete in buildings, and when bioenergy from heat facilities and/or combined heat and power facilities was substituted for energy from high‐emissions fossil fuels. We conclude that (1) national‐level substitution benefits need to be considered within a systems perspective on climate change mitigation to avoid the development of policies that deliver no net benefits to the atmosphere, (2) the use of long‐lived wood products in buildings to displace steel and concrete reduces GHG emissions, (3) the greatest bioenergy substitution benefits are achieved using a mix of facility types and capacities to displace emissions‐intensive fossil fuels.  相似文献   

11.
Cellulosic ethanol is widely believed to offer substantial environmental advantages over petroleum fuels and grain‐based ethanol, particularly in reducing greenhouse gas emissions from transportation. The environmental impacts of biofuels are largely caused by precombustion activities, feedstock production and conversion facility operations. Life cycle analysis (LCA) is required to understand these impacts. This article describes a field‐to‐blending terminal LCA of cellulosic ethanol produced by biochemical conversion (hydrolysis and fermentation) using corn stover or switchgrass as feedstock. This LCA develops unique models for most elements of the biofuel production process and assigns environmental impact to different phases of production. More than 30 scenarios are evaluated, reflecting a range of feedstock, technology and scale options for near‐term and future facilities. Cellulosic ethanol, as modeled here, has the potential to significantly reduce greenhouse gas (GHG) emissions compared to petroleum‐based liquid transportation fuels, though substantial uncertainty exists. Most of the conservative scenarios estimate GHG emissions of approximately 45–60 g carbon dioxide equivalent per MJ of delivered fuel (g CO2e MJ?1) without credit for coproducts, and 20–30 g CO2e MJ?1 when coproducts are considered. Under most scenarios, feedstock production, grinding and transport dominate the total GHG footprint. The most optimistic scenarios include sequestration of carbon in soil and have GHG emissions below zero g CO2e MJ?1, while the most pessimistic have life‐cycle GHG emissions higher than petroleum gasoline. Soil carbon changes are the greatest source of uncertainty, dominating all other sources of GHG emissions at the upper bound of their uncertainty. Many LCAs of biofuels are narrowly constrained to GHG emissions and energy; however, these narrow assessments may miss important environmental impacts. To ensure a more holistic assessment of environmental performance, a complete life cycle inventory, with over 1100 tracked material and energy flows for each scenario is provided in the online supplementary material for this article.  相似文献   

12.
Forests and forest industries can contribute to climate change mitigation by sequestering carbon from the atmosphere, by storing it in biomass, and by fabricating products that substitute more greenhouse gas emission intensive materials and energy. The objectives of the study are to specify alternative scenarios for the diversification of wood product markets and to determine how an increasingly diversified market structure could impact the net carbon emissions (NCEs) of forestry in Finland. The NCEs of the Finnish forest sector were modelled for the period 2016–2056 by using a forest management simulation and optimization model for the standing forests and soil and separate models for product carbon storage and substitution impacts. The annual harvest was fixed at approximately 70 Mm3, which was close to the level of roundwood removals for industry and energy in 2016. The results show that the substitution benefits for a reference scenario with the 2016 market structure account for 9.6 Mt C (35.2 Mt CO2 equivalent [CO2 eq]) in 2056, which could be further increased by 7.1 Mt C (26 Mt CO2 eq) by altering the market structure. As a key outcome, increasing the use of by‐products for textiles and wood–plastic composites in place of kraft pulp and biofuel implies greater overall substitution credits compared to increasing the level of log harvest for construction.  相似文献   

13.
The aviation industry accounts for more than 2% of global CO2 emissions. Biojet fuel is expected to make an essential contribution to the decarbonization of the aviation sector. Brazil is seen as a key player in developing sustainable aviation biofuels owing to its long‐standing experience with biofuels. Nevertheless, a clear understanding of what policies may be conducive to the emergence of a biojet fuel supply chain is lacking. We extended a spatially explicit agent‐based model to explore the emergence of a biojet fuel supply chain from the existing sugarcane–ethanol supply chain. The model accounts for new policies (feed‐in tariff and capital investment subsidy) and new considerations into the decision making about production and investment in processing capacity. We found that in a tax‐free gasoline regime, a feed‐in tariff above 3 R$/L stimulates the production of biojet fuel. At higher levels of gasoline taxation (i.e., 2.46 R$/L), however, any feed‐in tariff is insufficient to ensure the production of biojet fuel. Thus, at these levels of gasoline taxation, it is needed to introduce regulations on the production of biojet fuel to ensure its production. Given the current debate about the future direction of the biofuel policy in Brazil, we recommend further research into the effect of market mechanisms based on greenhouse gas emissions on the emergence of a Brazilian biojet fuel supply chain.  相似文献   

14.
This study presents the carbon footprint of a paperback book for which the cover and inside papers were produced in the United States and printed in Canada. The choice of paper mills for both cover and page papers was based on criteria such as percentage of recycled content in the pulp mix, transport distances (pulp mill to paper mill, paper mill to print), and technologies. The cradle‐to‐gate assessment of greenhouse gas (GHG) emissions follows recognized guidelines for carbon footprint assessment. The results show that the production of 400,000 books, mainly distributed in North America, would generate 1,084 tonnes carbon dioxide equivalent (CO2‐eq), or 2.71 kilograms (kg) CO2‐eq per book. The impact of using deinked market pulp (DMP) is shown here to be detrimental, accounting for 54% of total GHG emissions and being 32% higher than reference virgin Kraft pulp. This supports findings that DMP mill GHG emissions strongly correlate with the carbon intensity of the power grid supplying the pulp mill and that virgin Kraft mills that reuse wood residue and black liquor to produce heat and electricity can achieve lower GHG emissions per tonne of pulp produced. Although contrary to common thinking, this is consistent with the Paper Task Force 2002 conclusion for office paper (the closest paper grade to writing paper or fine paper) (EDF 2002a). To get a cradle‐to‐grave perspective, three different end‐of‐life (EOL) scenarios were analyzed, all of which included a harvested wood product (HWP) carbon storage benefit for 25 years. The GHG offset concept within the context of the book editor's “carbon‐neutral” paper claims is also discussed.  相似文献   

15.
The long‐term greenhouse gas emissions implications of wood biomass (‘bioenergy’) harvests are highly uncertain yet of great significance for climate change mitigation and renewable energy policies. Particularly uncertain are the net carbon (C) effects of multiple harvests staggered spatially and temporally across landscapes where bioenergy is only one of many products. We used field data to formulate bioenergy harvest scenarios, applied them to 362 sites from the Forest Inventory and Analysis database, and projected growth and harvests over 160 years using the Forest Vegetation Simulator. We compared the net cumulative C fluxes, relative to a non‐bioenergy baseline, between scenarios when various proportions of the landscape are harvested for bioenergy: 0% (non‐bioenergy); 25% (BIO25); 50% (BIO50); or 100% (BIO100), with three levels of intensification. We accounted for C stored in aboveground forest pools and wood products, direct and indirect emissions from wood products and bioenergy, and avoided direct and indirect emissions from fossil fuels. At the end of the simulation period, although 82% of stands were projected to maintain net positive C benefit, net flux remained negative (i.e., net emissions) compared to non‐bioenergy harvests for the entire 160‐year simulation period. BIO25, BIO50, and BIO100 scenarios resulted in average annual emissions of 2.47, 5.02, and 9.83 Mg C ha?1, respectively. Using bioenergy for heating decreased the emissions relative to electricity generation as did removing additional slash from thinnings between regeneration harvests. However, all bioenergy scenarios resulted in increased net emissions compared to the non‐bioenergy harvests. Stands with high initial aboveground live biomass may have higher net emissions from bioenergy harvest. Silvicultural practices such as increasing rotation length and structural retention may result in lower C fluxes from bioenergy harvests. Finally, since passive management resulted in the greatest net C storage, we recommend designation of unharvested reserves to offset emissions from harvested stands.  相似文献   

16.
Several EU countries import wood pellets from the south‐eastern United States. The imported wood pellets are (co‐)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood‐pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues and mill residues. Per feedstock, the GHG balance of wood‐pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock materials, such as in‐forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood‐pellet electricity equals that of alternative scenarios within 0–21 years (the GHG parity time), after which wood‐pellet electricity has sustained climate benefits. Parity times increase by a maximum of 12 years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood‐pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0–6 years) and fastest GHG benefits from wood‐pellet electricity. We find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land uses. This novel approach is relevant for bioenergy derived from low‐value feedstocks.  相似文献   

17.
Forests of the Midwestern United States are an important source of fiber for the wood and paper products industries. Scientists, land managers, and policy makers are interested in using woody biomass and/or harvest residue for biofuel feedstocks. However, the effects of increased biomass removal for biofuel production on forest production and forest system carbon balance remain uncertain. We modeled the carbon (C) cycle of the forest system by dividing it into two distinct components: (1) biological (net ecosystem production, net primary production, autotrophic and heterotrophic respiration, vegetation, and soil C content) and (2) industrial (harvest operations and transportation, production, use, and disposal of major wood products including biofuel and associated C emissions). We modeled available woody biomass feedstock and whole‐system carbon balance of 220 000 km2 of temperate forests in the Upper Midwest, USA by coupling an ecosystem process model to a collection of greenhouse gas life‐cycle inventory models and simulating seven forest harvest scenarios in the biological ecosystem and three biofuel production scenarios in the industrial system for 50 years. The forest system was a carbon sink (118 g C m?2 yr?1) under current management practices and forest product production rates. However, the system became a C source when harvest area was doubled and biofuel production replaced traditional forest products. Total carbon stores in the vegetation and soil increased by 5–10% under low‐intensity management scenarios and current management, but decreased up to 3% under high‐intensity harvest regimes. Increasing harvest residue removal during harvest had more modest effects on forest system C balance and total biomass removal than increasing the rate of clear‐cut harvests or area harvested. Net forest system C balance was significantly, and negatively correlated (R2 = 0.67) with biomass harvested, illustrating the trade‐offs between increased C uptake by forests and utilization of woody biomass for biofuel feedstock.  相似文献   

18.
Across the energy sector, alternatives to fossil fuels are being developed, in response to the dual drivers of climate change and energy security. For transport, biofuels have the greatest potential to replace fossil fuels in the short‐to medium term. However, the ecological benefits of biofuels and the role that their deployment can play in mitigating climate change are being called into question. Life Cycle Assessment (LCA) is a widely used approach that enables the energy and greenhouse gas (GHG) balance of biofuel production to be calculated. Concerns have nevertheless been raised that published data show widely varying and sometimes contradictory results. This review describes a systematic review of GHG emissions and energy balance data from 44 LCA studies of first‐ and second‐generation biofuels. The information collated was used to identify the dominant sources of GHG emissions and energy requirements in biofuel production and the key sources of variability in published LCA data. Our analysis revealed three distinct sources of variation: (1) ‘real’ variability in parameters e.g. cultivation; (2) ‘methodological’ variability due to the implementation of the LCA method; and (3) ‘uncertainty’ due to parameters rarely included and poorly quantified. There is global interest in developing a sustainability assessment protocol for biofuels. Confidence in the results of such an assessment can only be assured if these areas of uncertainty and variability are addressed. A more defined methodology is necessary in order to allow effective and accurate comparison of results. It is also essential that areas of uncertainty such as impacts on soil carbon stocks and fluxes are included in LCA assessments, and that further research is conducted to enable a robust calculation of impacts under different land‐use change scenarios. Without the inclusion of these parameters, we cannot be certain that biofuels are really delivering GHG savings compared with fossil fuels.  相似文献   

19.
Energy crops for biofuel production, especially switchgrass (Panicum virgatum), are of interest from a climate change perspective. Here, we use outputs from a crop growth model and life cycle assessment (LCA) to examine the global warming intensity (GWI; g CO2 MJ−1) and greenhouse gas (GHG) mitigation potential (Mg CO2 year−1) of biofuel systems based on a spatially explicit analysis of switchgrass grown on marginal land (abandoned former cropland) in Michigan, USA. We find that marginal lands in Michigan can annually produce over 0.57 hm3 of liquid biofuel derived from nitrogen-fertilized switchgrass, mitigating 1.2–1.5 Tg of CO2 year−1. About 96% of these biofuels can meet the Renewable Fuel Standard (60% reduction in lifecycle GHG emissions compared with conventional gasoline; GWI ≤37.2 g CO2 MJ−1). Furthermore, 73%–75% of these biofuels are carbon-negative (GWI less than zero) due to enhanced soil organic carbon (SOC) sequestration. However, simulations indicate that SOC levels would fail to increase and even decrease on the 11% of lands where SOC stocks >>200 Mg C ha−1, leading to carbon intensities greater than gasoline. Results highlight the strong climate mitigation potential of switchgrass grown on marginal lands as well as the needs to avoid carbon rich soils such as histosols and wetlands and to ensure that productivity will be sufficient to provide net mitigation.  相似文献   

20.
Transport accounts for about one quarter of South Africa's final energy consumption. Most of the energy used is based on fossil fuels causing significant environmental burdens. This threat becomes even more dominant as a significant growth in transport demand is forecasted, especially in South Africa's economic hub, Gauteng province. The South African government has realized the potential of biofuel usage for reducing oil import dependency and greenhouse gas (GHG) and has hence developed a National Biofuels Industrial Strategy to enforce their use. However, there is limited experience in the country in commercial biofuel production and some of the proposed crops (i.e. rapeseed and sugar beet) have not been yet cultivated on a larger scale. Furthermore, there is only limited research available, looking at the feasibility of commercial scale biofuel production or abatement costs of GHG emissions. To assess the opportunities of biofuel production in South Africa, the production costs and consumer price levels of the fuels recommended by the national strategy are analysed in this article. Moreover, the lifecycle GHG emissions and mitigation costs are calculated compared to the calculated fossil fuel reference including coal to liquid (CTL) and gas to liquid (GTL) fuels. The results show that the cost for biofuel production in South Africa are currently significantly higher (between 30% and 80%) than for the reference fossil fuels. The lifecycle GHG emissions of biofuels (especially for sugar cane) are considerably lower (up to 45%) than the reference fossil GHG emissions. The resulting GHG abatement costs are between 1000 and 2500 ZAR2007 per saved ton of carbon dioxide equivalent, which is high compared to the current European CO2 market prices of ca. 143 ZAR2007 t?1. The analysis has shown that biofuel production and utilization in South Africa offers a significant GHG‐mitigation potential but at relatively high cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号