首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: A Lactobacillus buchneri strain NRRL B‐30929 can convert xylose and glucose into ethanol and chemicals. The aims of the study were to survey three strains (NRRL B‐30929, NRRL 1837 and DSM 5987) for fermenting 17 single substrates and to exam NRRL B‐30929 for fermenting mixed substrates from biomass hydrolysates. Methods and Results: Mixed acid fermentation was observed for all three L. buchneri strains using various carbohydrates; the only exception was uridine which yielded lactate, acetate and uracil. Only B‐30929 is capable of utilizing cellobiose, a desired trait in a potential biocatalyst for biomass conversion. Flask fermentation indicated that the B‐30929 strain can use all the sugars released from pretreated hydrolysates, and producing 1·98–2·35 g l?1 ethanol from corn stover hydrolysates and 2·92–3·01 g l?1 ethanol from wheat straw hydrolysates when supplemented with either 0·25× MRS plus 1% corn steep liquor or 0·5× MRS. Conclusions: The L. buchneri NRRL B‐30929 can utilize mixed sugars in corn stover and wheat straw hydrolysates for ethanol and other chemical production. Significance and Impact of the Study: These results are valuable for future research in engineering L. buchneri NRRL B‐30929 for fermentative production of ethanol and chemicals from biomass.  相似文献   

2.
Aims: To analyse the production of different metabolites by dark‐grown Euglena gracilis under conditions found to render high cell growth. Methods and Results: The combination of glutamate (5 g l?1), malate (2 g l?1) and ethanol (10 ml l?1) (GM + EtOH); glutamate (7·15 g l?1) and ethanol (10 ml l?1); or malate (8·16 g l?1), glucose (10·6 g l?1) and NH4Cl (1·8 g l?1) as carbon and nitrogen sources, promoted an increase of 5·6, 3·7 and 2·6‐fold, respectively, in biomass concentration in comparison with glutamate and malate (GM). In turn, the production of α‐tocopherol after 120 h identified by LC‐MS was 3·7 ± 0·2, 2·4 ± 0·1 and 2 ± 0·1 mg [g dry weight (DW)]?1, respectively, while in the control medium (GM) it was 0·72 ± 0·1 mg (g DW)?1. For paramylon synthesis, the addition of EtOH or glucose induced a higher production. Amino acids were assayed by RP‐HPLC; Tyr a tocopherol precursor and Ala an amino acid with antioxidant activity were the amino acids synthesized at higher concentration. Conclusions: Dark‐grown E. gracilis Z is a suitable source for the generation of the biotechnologically relevant metabolites tyrosine, α‐tocopherol and paramylon. Significance and Impact of the Study: By combining different carbon and nitrogen sources and inducing a tolerable stress to the cell by adding ethanol, it was possible to increase the production of biomass, paramylon, α‐tocopherol and some amino acids. The concentrations of α‐tocopherol achieved in this study are higher than others reported previously for Euglena, plant and algal systems. This work helps to understand the effect of different carbon sources on the synthesis of bio‐molecules by E. gracilis and can be used as a basis for future works to improve the production of different metabolites of biotechnological importance by this organism.  相似文献   

3.
In this work, straw hydrolysates were used to produce succinic acid by Actinobacillus succinogenes CGMCC1593 for the first time. Results indicated that both glucose and xylose in the straw hydrolysates were utilized in succinic acid production, and the hydrolysates of corn straw was better than that of rice or wheat straw in anaerobic fermentation of succinic acid. However, cell growth and succinic acid production were inhibited when the initial concentration of sugar, which was from corn straw hydrolysate (CSH), was higher than 60 g l?1. In batch fermentation, 45.5 g l?1 succinic acid concentration and 80.7% yield were attained after 48 h incubation with 58 g l?1 of initial sugar from corn straw hydrolysate in a 5-l stirred bioreactor. While in fed-batch fermentation, concentration of succinic acid achieved 53.2 g l?1 at a rate of 1.21 g l?1 h?1 after 44 h of fermentation. Our work suggested that corn straw could be utilized for the economical production of succinic acid by A. succinogenes.  相似文献   

4.
Lactic acid production from xylose by the fungus Rhizopus oryzae   总被引:1,自引:1,他引:0  
Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure l(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g−1. By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l−1 showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l−1) and glucose (19.2 g l−1) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l−1 h−1 and 0.5 g xylose l−1 h−1. This resulted mainly into the product lactic acid (6.8 g l−1) and ethanol (5.7 g l−1).  相似文献   

5.
Aims: To produce single cell protein (SCP) by using waste capsicum powder produced during capsanthin extraction as a substrate. Methods and results: The extraction [CPM (capsicum powder medium)] from waste capsicum powder was used as culture medium to cultivate four yeast strains. The main composition of CPM was determined. The average concentration of total sugar, total nitrogen and phosphorous of CPM were 16·3, 3·7 g l?1 and 785·4 mg l?1, respectively. Four yeast strains were cultured in two CPMs, and the cell mass, protein content of cells and specific growth rate of cells were determined. Addition of corn steep liquor significantly increased the cell mass production. Presence of capsaicin in CPM did not show inhibition of cell growth of yeast tested. Conclusions: CPM contained sufficient nutrients and could be used as a good medium to produce SCP. Candida utilis 1769 was chosen as the biomass producer because of its highest SCP formation (6·8 g l?1) and higher specific growth rate (0·12 h?1). The amino acid composition of its protein was well balanced. Significance and Impact of the Study: Utilization of waste capsicum powder can reduce environmental pollution and increase protein supply for animal feed.  相似文献   

6.
Aims: The purpose of this study was to determine the proficiency of supplements to enhance the recovery of Salmonella from heat‐treated liquid egg albumen on solid agar media. Methods and Results: Salmonella‐inoculated albumen, heated at 53·3°C for 4 min, was plated on 39 combinations of solid media with or without the addition of 12 supplements. Greater numbers of Salmonella (P < 0·05) recovered with the addition of 1·0 g l?1 ferrous sulfate (FeSO4) than with any other supplements, except for 0·5 or 1·0 g l?1 3′3′‐thiodipropionic acid (TDP), which recovered equivalent populations. Addition of 1·0 g l?1 sodium pyruvate or 6·0 g l?1 yeast extract plus 1·0 g l?1 sodium pyruvate supported greater resuscitation than unsupplemented tryptic soy agar (TSA) or supplementing with 0·01 or 0·1 g l?1 N‐propyl gallate, 10 g l?1 activated charcoal, 0·1 g l?1 KMnO4 or 50 mg l?1 ethoxyquin. The remaining supplements supported recovery of equivalent numbers of Salmonella, which were fewer cells than recovered with 1·0 g l?1 FeSO4, yet greater populations than recovered with 50 mg l?1 ethoxyquin. Conclusion: Supplementation of plating media with FeSO4, TDP or sodium pyruvate enhanced recovery of sublethally injured Salmonella from albumen. Significance and Impact of the Study: Pasteurizing albumen impedes recovery of pathogens. These results suggest that the addition of supplements to plating media may assist resuscitation and colony development of heat‐injured salmonellae.  相似文献   

7.
Aims: To overproduce erythromycin C, B or D and evaluate the effect of disruption of tailoring genes eryK and eryG in an industrial erythromycin producer. Methods and Results: The tailoring genes eryG and eryK were inactivated individually or simultaneously by targeted gene disruption in an industrial strain Saccharopolyspora erythraea HL3168 E3, resulting in the overproduction of erythromycin C (2·48 g l?1), B (1·70 g l?1) or D (2·15 g l?1) in the mutant strain QL‐G, QL‐K or QL‐KG, respectively. Analysis of the erythromycin congeners throughout the fermentation indicated that, at the end of fermentation, comparatively large amount of erythromycin D (0·67 g l?1) was accumulated in QL‐G, whereas only small amount of erythromycin D (0·10 g l?1) was produced in QL‐K. Conclusions: Inactivation of tailoring genes eryG and eryK in the high producer did not affect the biosynthesis of erythromycin. However, erythromycin D could be more efficiently methylated by EryG than be hydroxylated by EryK. Significance and Impact of the Study: Development of the mutant strains provides a method for the economical large‐scale production of potent lead compounds. The information about the accumulation and conversion of erythromycins in the industrial strains may contribute to further improving erythromycin production.  相似文献   

8.
Aim: To maximize biomass production of an ochratoxigenic mould–controlling strain of Lachancea thermotolerans employing response surface methodology (RSM). Methods and Results: Using Plackett–Burman screening designs (PBSD) and central composite designs (CCD), an optimized culture medium containing (g l?1): fermentable sugars (FS), 139·2, provided by sugar cane molasses (CMz), (NH4)2HPO4 (DAP), 9·0, and yeast extract (YE), 2·5, was formulated. Maximal cell concentration obtained after 24 h at 28°C was 24·2 g l?1cell dry weight (CDW). The mathematical model obtained was validated in experiments performed in shaken‐flask cultures and also in aerated bioreactors. Maximum yield and productivity values achieved were, respectively, of 0·23 g CDW/g FS in a medium containing (g l?1): FS, 87·0; DAP, 7·0; YE, 1·0; and of 0·96 g CDW l?1 h?1 in a medium containing (g l?1): FS, 150·8 plus DAP, 6·9. Conclusions: Optimized culture conditions for maximizing yeast biomass production determined in flask cultures were applicable at a larger scale. The highest yield values were attained in media containing relatively low‐CMz concentrations supplemented with DAP and YE. Yeast extract would not be necessary if higher productivity is the aim. Significance and Impact of the Study: Cells of L. thermotolerans produced aerobically could be sustainably produced in a medium just containing cheap carbon, nitrogen and phosphorus sources. Response surface methodology allowed the fine‐tuning of cultural conditions.  相似文献   

9.
Aims: The aim of this work was to detect Bacillus thuringiensis endospore production during fermentation under conditions hindering endospore detection, i.e. in a complex undefined industrial medium with a high content of solids in suspension. Methods and Results: Bacterial endospore production was measured using the photoluminescence of dipicolinate (DPA) with Tb3+. The high temperature and pressure of a conventional autoclave was used to release DPA from the endospores. The endospore was obtained from B. thuringiensis var. kurstaki HD‐73 fermentations in industrial‐type media with 25·1 and 54·1 g l?1 glucose, 4·4 and 35·3 g l?1 soybean meal, 5·8 g l?1 yeast extract, 9·2 g l?1 corn steep solids and mineral salts. Conclusions: In this study, we successfully determined the DPA concentrations during the culture of B. thuringiensis in high‐concentration soybean meal media. A good correlation was found between microscope endospore counting and DPA measurements in the cultures. Significance and Impact of the Study: Because of synergy between Cry protein and endospore in B. thuringiensis bioinsecticides formulation, it is important to be able to determine endospore development during B. thuringiensis industrial‐type fermentation, in order to ascertain the beginning of sporulation.  相似文献   

10.
Aims: Improvement of cellulase production of Penicillium decumbens by genome shuffling of an industrial catabolite‐repression‐resistant strain JU‐A10 with its mutants. Methods and Results: After two rounds of genome shuffling, three fusants, GS2‐15, GS2‐21 and GS2‐22, were obtained, showing 100%, 109% and 94% increase in FPase activity than JU‐A10 respectively. The cellulase production of the fusants on various substrates, such as corn stover, wheat straw, bagasse and the corncob residue, was studied. The maximum productivities of GS2‐15, GS2‐21 and GS2‐22 were 92·15, 102·63 and 92·35 FPU l?1 h?1 on the corncob residue at 44 h respectively, which were 117%, 142% and 118% higher than that of JU‐A10 (42·44 FPU l?1 h?1, at 90 h). The improvements of the fusants were possibly because of their enhanced growth rates, earlier cellulase synthesis and higher secretion of extracellular proteins. Conclusions: The fusants obtained after genome shuffling could produce abundant cellulase much earlier, and they could be potential candidates for bioconversion process. Significance and Impact of the Study: This is the first report on the improvement of cellulase production in fungi by genome shuffling, and this is a good technique to improve other important phenotypes in fungi.  相似文献   

11.
Aims: Arthrospira platensis has been studied for single‐cell protein production because of its biomass composition and its ability of growing in alternative media. This work evaluated the effects of different dilution rates (D) and urea concentrations (N0) on A. platensis continuous culture, in terms of growth, kinetic parameters, biomass composition and nitrogen removal. Methods and results: Arthrospira platensis was continuously cultivated in a glass‐made vertical column photobioreactor agitated with Rushton turbines. There were used different dilution rates (0·04–0·44 day?1) and urea concentrations (0·5 and 5 mmol l?1). With N0 = 5 mmol l?1, the maximum steady‐state biomass concentration was1415 mg l?1, achieved with D = 0·04 day?1, but the highest protein content (71·9%) was obtained by applying D = 0·12 day?1, attaining a protein productivity of 106·41 mg l?1 day?1. Nitrogen removal reached 99% on steady‐state conditions. Conclusions: The best results were achieved by applying N0 = 5 mmol l?1; however, urea led to inhibitory conditions at D 0·16 day?1, inducing the system wash‐out. The agitation afforded satisfactory mixture and did not harm the trichomes structure. Significance and Impact of the Study: These results can enhance the basis for the continuous removal of nitrogenous wastewater pollutants using cyanobacteria, with an easily assembled photobioreactor.  相似文献   

12.
Aims: To determine the contribution of potential modes of action of a Bacillus cereus aquaculture biological control agent in inhibition of the fish pathogen, Aeromonas hydrophila. Methods and Results: When B. cereus was tested in plate well inhibition studies, no production of antimicrobial compounds was detected. Bacillus cereus had a high growth rate (0·96 h?1), whereas Aer. hydrophila concentration decreased by c. 70% in co‐culture experiments. In nutrient limitation studies, B. cereus had a significantly higher growth rate when cultured under glucose (P < 0·05) and iron (P < 0·01) limitation in comparison with Aer. hydrophila. Bacillus cereus glucose (0·30 g l?1 h?1) and iron (0·60 mg l?1 h?1) uptake rates were also significantly higher (P < 0·01) than the Aer. hydrophila glucose (0·14 g l?1 h?1) and iron (0·43 mg l?1 h?1) uptake rates. Iron uptake was facilitated by siderophore production shown in time profile studies where relative siderophore production was c. 60% through the late exponential and sporulation phases. Conclusions: Competitive exclusion by higher growth rate, competition for organic carbon and iron, facilitated by siderophore production, could be identified as mechanisms of pathogen growth inhibition by B. cereus. Significance and Impact of the Study: This study is the first elucidation of the mechanism of action of our novel B. cereus biological agent in growth attenuation of pathogenic Aer. hydrophila. This study enhances the application knowledge and attractiveness for adoption of B. cereus NRRL 100132 for exploitation in aquaculture.  相似文献   

13.
Biotransformation of furfural by Saccharomyces cerevisiae 354 was performed in a sugar cane molasses medium containing salts. The furfural added was rapidly reduced to furfuryl alcohol until a final addition of 3%, without inhibition in the cells growth. An efficient conversion of 96% was obtained by feeding 6 g · l?1 every 6 hours.  相似文献   

14.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

15.
The best yields and productivities of 0.38 g · g?1 and 0.35 g · l?1 h?1, respectively, for the propionic acid production in a batchsystem using sugar-cane final molasses as carbon source were obtained when an initial TRS concentration of 50 g · l?1 was used. It was obvious that this process is severely inhibited by the acids produced and the most drastic effect (μ = 0) was at a TVA concentration near to 250 mmol · l?1, independently of the initial TRS concentration employed. A generalizated equation of noncompetitive inhibition was adjusted: and kinetic inhibition constants for each initial TRS concentration studied were estimated.  相似文献   

16.
The influence of aeration, stirring conditions, and the addition of furfural on the yield and productivity of furfural – furfuryl alcohol bioconversion by the yeast strain Saccharomyces cerevisiae 354 was investigated. The formation of furfuryl alcohol increases up to 32 hours of incubation corresponding to the addition of furfural, while the cell growth essentially ceased at 20 hours. The conversion of furfural into furfuryl alcohol under anaerobic and low aeration conditions was 70% and the productivity 0.5g · 1?1 · h?1, when the final concentrationof of furfural amounted to 35 g · 1?1.  相似文献   

17.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

18.

Objective

To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO3 supplementation condition.

Results

From the medium containing 50 g sugars l?1 and 0.5 g formic acid l?1, only 0.75 g ABE l?1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l?1 was produced when pH was adjusted by 4 g CaCO3 l?1. The beneficial effect can be ascribed to the buffering capacity of CaCO3. Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO3. Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred.

Conclusion

The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO3 supplementation due to its buffering capacity.
  相似文献   

19.
Aims: Peptones are one of the most expensive constituents of microbial media. This study was undertaken to prepare the peptone from waste chicken feathers through a new process. Methods and Results: The chemical analysis of chicken feather peptone (CFP) was performed. The ability of CFP to support the growth of the three test bacteria in liquid and agar media was comparable to those of three commercial peptones [tryptone peptone (TP), fish peptone and protease peptone (PP)]. Conclusions: CFP was found to be rich in ash (42·1 g 100 g?1), protein (55·8 g 100 g?1) and mineral contents. The maximum biomass yield (3·13 g l?1) and colony number (83 × 108 CFU ml?1) for bacterium Bacillus subtilis were attained with CFP. The maximum biomass yields and colony numbers for Lactobacillus delbrueckii ssp. bulgaricus and Escherichia coli were reached in TP medium. Second high biomass yield (2·64 g l?1) and colony number (75 × 108 CFU ml?1) for E. coli were achieved using CFP. Third high biomass yield (1·29 g l?1) and colony number (90 × 107 CFU ml?1) for Lact. delbrueckii ssp. bulgaricus were obtained in CFP medium. Significance and Impact of the Study: Usability of waste chicken feathers as substrate for bacteria was investigated for the first time in the present study. The peptone may be used in industrial fermentations for production of antibiotics, organic acids, enzymes and biopolymer. It may be also used in clinical microbiology. A new chemical process was developed for peptone preparation. This process may be also employed for peptone preparation from other organic materials, especially fibrose protein‐containing materials.  相似文献   

20.
Acid hydrolysis of sugarcane bagasse for lactic acid production   总被引:3,自引:0,他引:3  
In order to use sugarcane bagasse as a substrate for lactic acid production, optimum conditions for acid hydrolysis of the bagasse were investigated. After lignin extraction, the conditions were varied in terms of hydrochloric (HCl) or sulfuric (H2SO4) concentration (0.5–5%, v/v), reaction time (1–5 h) and incubation temperature (90–120 °C). The maximum catalytic efficiency (E) was 10.85 under the conditions of 0.5% of HCl at 100 °C for 5 h, which the main components (in g l−1) in the hydrolysate were glucose, 1.50; xylose, 22.59; arabinose, 1.29; acetic acid, 0.15 and furfural, 1.19. To increase yield of lactic acid production from the hydrolysate by Lactococcus lactis IO-1, the hydrolysate was detoxified through amberlite and supplemented with 7 g l−1 of xylose and 7 g l−1 of yeast extract. The main products (in g l−1) of the fermentation were lactic acid, 10.85; acetic acid, 7.87; formic acid, 6.04 and ethanol, 5.24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号