首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of 2-methyl-5-nitrobenzenesulfonohydrazides were prepared and evaluated as inhibitors of PI3K. An isoquinoline derivative shows good selectivity for the p110α isoform over p110β and p110δ, and also demonstrates good in vitro activity in a cell proliferation assay. Molecular modelling provides a rationalisation for the observed SAR.  相似文献   

2.
Ma CX  Crowder RJ  Ellis MJ 《Steroids》2011,76(8):750-752
Endocrine therapy has been the most effective treatment modality for hormone receptor positive breast cancer. However, its efficacy has been limited by either de novo or acquired resistance. Recent data indicates that activation of the phosphatidylinositol 3-kinase (PI3K) signaling is associated with the poor outcome luminal B subtype of breast cancer and accompanied by the development of endocrine therapy resistance. Importantly, inhibition of PI3K pathway signaling in endocrine resistant breast cancer cell lines reduces cell survival and improves treatment response to endocrine agents. Interestingly, mutations in PIK3CA, the alpha catalytic subunit of the class IA PI3K, which renders cells dependent on PI3K pathway signaling, is the most common genetic abnormality identified in hormone receptor positive breast cancer. The synthetic lethality observed between estrogen deprivation and PI3K pathway inhibition in estrogen receptor positive (ER+) breast cancer cell lines provides further scientific rational to target both estrogen receptor and the PI3K pathway in order to improve the outcome of ER+ breast cancer.  相似文献   

3.
Phosphatidylinositol 3-kinases (PI3K) phosphorylate the 3-position of the inositol ring of phosphatidylinositol-4,5-bisphosphate to produce phosphatidylinositol-3,4,5-trisphosphate. It is not clear whether PI3K can phosphorylate the inositol group in other biomolecules. We sought to determine whether PI3K was able to use glycosyl-phosphatidylinositol (GPI) as a substrate. This phospholipid may exist either in free form (GPIfree) or forming a lipid anchor (GPIanchor) for the attachment of extracellular proteins to the plasma membrane. We demonstrate the specific PI3K-mediated phosphorylation of the inositol 3-hydroxyl group within both types of GPI by incubating this phospholipid with immunoprecipitated PI3K. The phosphorylated product behaves in HPLC as a derivative of a PI3K lipid product. To our knowledge, this is the first demonstration that PI3K uses lipid substrates other than phosphoinositides. Further, we show that this has potential functional consequences. When GPIfree is phosphorylated, it becomes a poorer substrate for GPI-specific phospholipase D, but a better substrate for phosphatidylinositol-specific phospholipase C. These phosphorylation events may constitute the basis of a previously undescribed signal transduction mechanism.  相似文献   

4.
Li Y  Jiang B  Ensign WY  Vogt PK  Han J 《Cellular signalling》2000,12(11-12):751-757
Activation of phosphatidylinositol 3-kinase (PI 3-kinase) or of Akt induces myoblast differentiation. Activation of p38 MAP kinase also triggers myogenic differentiation. The current paper shows that PI 3-kinase and p38 MAP kinase signalling are activated by two separate pathways during myogenic differentiation; both are required for muscle differentiation. p38-induced myogenic differentiation can be inhibited by the PI 3-kinase inhibitor LY294002 without affecting p38 activity. Similarly, a constitutively active form of Akt, myristylated c-Akt (Myr-Akt), induces myogenic differentiation that is inhibited by the p38 inhibitor SB203580. An analysis of the two forms of p38, p38 and p38beta, shows that the activity of both is required for myogenic differentiation. These data suggest that PI 3-kinase and p38 signalling are essential and parallel pathways for myogenic differentiation. They may either affect different downstream targets required for myogenesis or they may converge on shared targets that require input from both signalling pathways.  相似文献   

5.
The phosphoinositide 3-kinase (PI3K) catalytic subunit p110delta, the most recently discovered member of the heterodimeric Class IA PI3K family, has been detected uniquely in leukocytes, but not in one member of the leukocyte family: platelets. We have examined freshly prepared isolates of human platelets for the presence of this enzyme, realizing that p110delta is highly susceptible to proteolytic degradation. We have utilized p110delta-directed Western blotting, RT-PCR, PI3K activity assays, and immunoprecipitations of PI3K Class IA subunits p85alpha, p85beta, and p110delta from lysed human platelets, as well as Triton X-100-insoluble cytoskeletal preparations from resting and thrombin receptor-activated platelets. We report that p110delta is present in association with p85alpha and p85beta in platelets, both in cytosolic and cytoskeletal fractions. The latter finding is consistent with the proposed role of p110delta in cytoskeletal function.  相似文献   

6.
目的幽门螺杆菌被认为是诱发胃癌的最强的风险因素。幽门螺旋杆菌的毒性成分是可以增加癌症危险的cag分泌系统,它可以使cagA和肽聚糖易位进入宿主细胞,进而激活信号转导通路。AKT是磷脂酰肌醇3。激酶(PI3K)的目的蛋白,并在胃癌中被激活,但PI3K-AKT和具有潜在致癌性的幽门螺旋杆菌诱导的细胞反应之间的关系尚不清楚。方法我们揭示了介导幽门螺旋杆菌刺激的AKT活化和胃上皮细胞的这些生物学结果之间的分子通路。结果幽门螺旋杆菌以Scr和表皮生长因子受体依赖性方式增加PI3K-AKT的信号,是幽门螺旋杆菌诱导的细胞迁移不可或缺的。结论这些结果表明,PI3K-AKT信号调节幽门螺旋杆菌诱发的病理生理反应,从而降低癌变门槛。  相似文献   

7.
Up-regulation of bone morphogenetic proteins (BMPs) and their receptors by tumor is an important hallmark in cancer progression, as it contributes through autocrine and paracrine mechanisms to tumor development, invasion, and metastasis. Generally, increased motility and invasion are positively correlated with the epithelial-mesenchymal transition (EMT). The purpose of the present study was to determine whether BMP-2 signaling to induce gastric cancer cells to undergo EMT-mediated invasion might pass through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Herein we showed that gastric cancer cell lines express all the components of BMP-2 signaling, albeit to different extents. Moreover, an increased concentration of BMP-2 strongly enhanced motility and invasiveness in gastric cancer cells, whereas no increase was observed in cells treated with either Noggin (a BMP-2 inhibitor) or BMP-2 blocking antibodies. The stimulation of BMP-2 in gastric cancer cells induces a full EMT characterized by Snail induction, E-cadherin delocalization and down-regulation, and up-regulation of mesenchymal and invasiveness markers. Furthermore, blockade of BMP-2 signaling by Noggin or BMP-2 blocking antibodies also restored these changes in EMT markers. In addition, phosphorylation of Akt was also enhanced by treatment with BMP-2, but not Noggin or BMP-2 blocking antibodies. Pretreatment of gastric cancer cells with PI-3 kinase/Akt kinase inhibitor (kinase-dead Akt [DN-Akt], Akt siRNA, or LY294002) significantly inhibited BMP-2-induced EMT and invasiveness. Overall, our studies suggest that BMP-2 promotes motility and invasion of gastric cancer cells by activating PI-3 kinase/Akt and that targeting of this signaling pathway may provide therapeutic opportunities in preventing metastasis mediated by BMP-2.  相似文献   

8.
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   

9.
Incubation of rat adipocytes with wortmannin, a potent and selective phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, completely blocked the antilipolytic action of insulin (IC50≈ 100 nM), the insulin-induced activation and phosphorylation of cGMP-inhibited cAMP phosphodiesterase (cGI-PDE) as well as the activation of the insulin-stimulated cGI-PDE kinase (IC50≈ 10–30 nM). No direct effects of the inhibitor on the insulin-stimulated cGI-PDE kinase, the cGI-PDE and the hormone-sensitive lipase were observed. These data suggest that activation of PI 3-kinase upstream of the insulin-stimulated cGI-PDE kinase in the antilipolytic insulin signalchain has an essential role for insulin-induced cGI-PDE activation/ phosphorylation and anti-lipolysis.  相似文献   

10.
Pleckstrin-2 (PLEK2) has been implicated to be regulated by phosphatidylinositol (PI) 3-kinase, while pleckstrin1 (PLEK1) has been suggested to be a major PKC substrate in platelets. In this paper, we confirmed that PLEK2 specifically bound to the PI 3-kinase products in vitro and explored its behavior. PLEK2 was found to be expressed in various adherent cell lines, while PLEK1 expression was restricted to non-adherent cells in the protein level. Expression of PLEK2 in COS1 cells induced formation of protrusive F-actin structure and enhanced the actin rearrangements induced on collagen- or fibronectin-coated plates. A PLEK2 mutant incapable of binding to the PI 3-kinase products did not show any effect on actin rearrangement. Knockdown of PLEK2 by shRNA inhibited spreading of HCC2998 adenocarcinoma cells. PLEK2 colocalized with Rac and was suggested to be oligomerized. These results suggest that PLEK2 is involved in actin rearrangement in a PI 3-kinase dependent manner.  相似文献   

11.
We examined the role of the Src kinase Lyn in phospholipase C-gamma 2 (PLC-gamma 2) and phosphatidylinositol (PI) 3-kinase activation in erythropoietin (Epo)-stimulated FDC-P1 cells transfected with a wild type (WT) Epo-receptor (Epo-R). We showed that two inhibitors of Src kinases, PP1 and PP2, abolish both PLC-gamma 2 tyrosine phosphorylation and PI 3-kinase activity in WT Epo-R FDC-P1 cells. We also demonstrated that Epo-phosphorylated Lyn is associated with tyrosine phosphorylated PLC-gamma 2 and PI 3-kinase in WT Epo-R FDC-P1-stimulated cells. Moreover Epo-activated Lyn phosphorylates in vitro PLC-gamma 2 immunoprecipitated from unstimulated cells. Our results suggest that the Src kinase Lyn is involved in PLC-gamma 2 phosphorylation and PI 3-kinase activation induced by Epo.  相似文献   

12.
Ceramide produced by hydrolysis of plasma membrane sphingomyelin (SM) in different cells including brain cells in response to proinflammatory cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta)] plays an important role in coordinating cellular responses to stress, growth suppression, and apoptosis. The present study underlines the importance of IL-10 and IL-13, cytokines with potent antiinflammatory properties, in inhibiting the proinflammatory cytokine (TNF-alpha and IL-1beta)-mediated degradation of SM to ceramide in rat primary astrocytes. Treatment of rat primary astrocytes with TNF-alpha or IL-1beta led to rapid degradation of SM to ceramide, whereas IL-10 and IL-13 by themselves were unable to induce the degradation of SM to ceramide. Interestingly, both IL-10 and IL-13 prevented proinflammatory cytokine-induced degradation of SM to ceramide. Both IL-10 and IL-13 caused rapid activation of phosphatidylinositol (PI) 3-kinase, and inhibition of that kinase activity by wortmannin and LY294002 potently blocked the inhibitory effect of IL-10 and IL-13 on proinflammatory cytokine-mediated induction of ceramide production. This study suggests that the inhibition of proinflammatory cytokine-mediated degradation of SM to ceramide by IL-10 and IL-13 is mediated through the activation of PI 3-kinase. As ceramide induces apoptosis and IL-10 and IL-13 inhibit the induction of ceramide production, we examined the effect of IL-10 and IL-13 on proinflammatory cytokine-mediated apoptosis. Inhibition of TNF-alpha-induced apoptosis by IL-10 and IL-13 suggests that the antiapoptotic nature of IL-10 and IL-13 is probably due to the inhibition of ceramide production.  相似文献   

13.
The cellular prion protein (PrP(C)) is thought to be involved in protection against cell death, however the exact cellular mechanisms involved are still controversial. Herein we present data that strongly indicate a functional link between PrP(C) expression and phosphatidylinositol 3-kinase (PI 3-kinase) activation, a protein kinase that plays a pivotal role in cell survival. Both mouse neuroblastoma N2a cells and immortalized murine hippocampal neuronal cell lines expressing wild-type PrP(C) had significantly higher PI 3-kinase activity levels than their respective controls. Moreover, PI 3-kinase activity was found to be elevated in brain lysates from wild-type mice, as compared to prion protein-knockout mice. Recruitment of PI 3-kinase by PrP(C) was shown to contribute to cellular survival toward oxidative stress by using 3-morpholinosydnonimine (SIN-1) and serum deprivation. Moreover, both PI 3-kinase activation and cytoprotection by PrP(C) appeared to rely on copper binding to the N-terminal octapeptide of PrP(C). Thus, we propose a model in which the interaction of copper(II) with the N-terminal domain of PrP(C) enables transduction of a signal to PI 3-kinase; the latter, in turn, mediates downstream regulation of cell survival.  相似文献   

14.
Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2α) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2α mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2α was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2α can modulate HCC cell growth.  相似文献   

15.
16.
Vanadium salts such as vanadyl sulfate (VS), potent inhibitors of protein tyrosine phosphatases, have been shown to mimic, augment, and prolong insulin's action. However, the molecular mechanism of responses to these salts is not clear. In the present studies, we examined if VS-induced effects on insulin action are associated with enhancement or augmentation in the activation state of key components of the insulin signaling pathway. Treatment of insulin receptor-overexpressing cells with insulin or VS resulted in a time-dependent transient increase in phosphorylation and activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) that peaked at about 5 min, then declined rapidly to about baseline within 30 min. However, when the cells were treated with VS before stimulation with insulin, sustained ERK 1/2 phosphorylation and activation were observed well beyond 60 min. VS treatment also prolonged the insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3-K), which was associated with sustained interaction between insulin receptor substrate-1 (IRS-1) and the p(85 alpha) subunit of phosphatidylinositol 3-kinase (PI3-K) in response to insulin. These data indicate that prolongation of insulin-stimulated ERK 1/2 and PI3-K activation by VS is due to a more stable complex formation of IRS-1 with the p(85 alpha) subunit which may, in turn, be responsible for its ability to enhance and extend the biological effects of insulin.  相似文献   

17.
The discovery of ligand efficient and lipophilicity efficient fragment inhibitors of class 1 phosphatidylinositide 3-kinases (PI3K) is reported. A fragment version of the AstraZeneca compound bank was docked to a homology model of the PI3K p110β isoform. Interaction-based scoring of the predicted binding poses served to further prioritise the virtual fragment hits. Experimental screening confirmed potency for a total of 18 fragment inhibitors, belonging to five different structural classes.  相似文献   

18.
The efficacy of mesenchymal stem cell (MSC) therapy for myocardial regeneration is limited by the poor survival of stem cells after transplantation into the infarcted heart. To improve the cell survival of MSCs in the infarcted heart, MSCs were genetically engineered to overexpress phosphoinositide-3-kinase class II alpha (PI3K-C2α). PI3K-C2α overexpression increased PI3K expression and the cell viability of MSCs. Furthermore, levels of survival-related phosphorylation were elevated in PI3K-C2α-MSCs. But, the level of apoptotic proteins downregulated and the number of PI-positive cells decreased in PI3K-C2α-MSCs compared to hypoxic MSCs. Nine rats per group had 1 × 106 cells (20 μl PBS) transplanted after myocardial infarction. One week after transplantation, infarct size and area of fibrosis were reduced in the PI3K-C2α-MSC-transplanted group. The number of TUNEL positive cells declined, while the mean microvessel count per field was higher in the PI3K-C2α-MSC group than the MSC-injected group. Heart function was improved in the PI3K-C2α-MSCs group as assessed using a Millar catheter at 3 weeks after transplantation. These findings suggest that overexpression of PI3K-C2α in MSCs can assist cell survival and enhance myocardial regeneration.  相似文献   

19.
Disruption of cell–extracellular matrix interaction causes epithelial cells to undergo apoptosis called anoikis, and resistance to anoikis has been suggested to be a critical step for cancer cells to metastasize. EphA2 is frequently overexpressed in a variety of human cancers, and recent studies have found that overexpression of EphA2 contributes to malignant cellular behavior, including resistance to anoikis, in several different types of cancer cells. Here we show that Ephexin4, a guanine nucleotide exchange factor for the small GTPase RhoG that interacts with EphA2, plays an important role in the regulation of anoikis. Knockdown of Ephexin4 promoted anoikis in HeLa cells, and experiments using a knockdown-rescue approach showed that activation of RhoG, phosphatidylinositol 3-kinase (PI3K), and Akt was required for the Ephexin4-mediated suppression of anoikis. Indeed, Ephexin4 knockdown caused a decrease in RhoG activity and Akt phosphorylation in HeLa cells cultured in suspension. In addition, Ephexin4 was involved in the EphA2-mediated suppression of anoikis. Taken together, these results suggest that Ephexin4 mediates resistance to anoikis through activation of RhoG and PI3K downstream of EphA2.  相似文献   

20.
We aimed to study the effects of LY294002, an inhibitor of class I phosphatidylinositol 3-kinase (PI3K), on proliferation, apoptosis, and autophagy in gastric cancer cell line SGC7901. In this study, we showed that LY294002 inhibited the viability of gastric cancer SGC7901 cells. We also showed that LY294002 increased the expression of microtubule-associated protein 1 light chain 3 (LC3), and increased monodansylcadaverine (MDC)-labeled vesicles. LY294002 activated autophagy by activating p53 and caspase-3, and induced apoptosis by up-regulatingp53 and p53-up-regulated modulator of apoptosis ( PUMA ). Therefore, LY294002 might induce cytotoxicity in SGC7901 cells through activation of p53 and the downstream point PUMA . These findings suggest that inhibition of the class I PI3K signaling pathway is a potential strategy for managing gastric cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号