首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although quinones present a large array of biological activities, a few studies on the herbicidal potential of 2,5‐bis(alkyl/arylamino)‐1,4‐benzoquinones have been reported to date. In this work, starting from benzoquinone, 13 2,5‐bis(alkyl/arylamino)‐1,4‐benzoquinones were prepared in 46 – 93% yield. The products were fully characterized by spectroscopic analyses and their phytotoxicity against Cucumis sativus and Sorghum bicolor seedlings was investigated. At 100 ppm, compounds caused 10 – 88% growth inhibition of the dicotyledonous species, whereas the monocotyledon was less affected. Most compounds exerted little inhibitory effect on a cyanobacterial model strain. However, at 100 μm , compounds 8  –  10 caused about 50% inhibition of algal growth, and compounds 1 and 2 reduced cell viability in the 1 – 10 μm range. The ability of benzoquinone derivatives to interfere with the light‐driven ferricyanide reduction by isolated spinach chloroplasts was evaluated. Some substances showed a moderate effect as uncouplers, but no relationship was found between this property and their biological activity, indicating that the herbicidal effect is not associated with the inhibition of the photosynthetic electron transport chain. Phytotoxic compounds were not toxic to insects, strengthening the possibility that they may serve as lead for the development of eco‐friendly herbicides.  相似文献   

2.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

3.
4.
Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand‐binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC‐MS to identify candidate binding ligands. We optimized this method using ABA–PYL interactions and show that ABA co‐purifies with wild‐type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 μm , which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37 START domain‐related proteins, which resulted in the identification of ligands that co‐purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co‐purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants.  相似文献   

5.
6.
Lithium‐ion batteries are one of the most common forms of energy storage devices used in society today. Due to the inherent limitations of conventional Li‐ion batteries, organic materials have surfaced as potentially suitable electrode alternatives with improved performance and sustainability. Viologens and phosphaviologens in particular, are strong electron‐accepting materials with excellent kinetic properties, making them suitable candidates for battery applications. In this paper, new polymeric species of the latter moieties are reported that lead to improved electrode stability and device performance. The performance of the phosphaviologen is further enhanced through the utilization of both redox steps, allowing for good performance proof‐of‐concept hybrid organic/Li‐ion batteries. This opens the potential for more sustainable and improved battery performance for use in current energy applications.  相似文献   

7.
8.

Background

Nuclear membrane is one of the main barriers in polymer mediated intracellular gene delivery. To improve the transgenic activity and safety of nonviral vector, triamcinolone acetonide (TA) as a nuclear localization signal was conjugated with different molecular weight polyethylenimine (PEI).

Methods

Different molecular weight PEI [600, 1800, 25 000 (25k)] was conjugated with TA to synthesize PEI‐TA by two‐step reaction. Their physicochemical characteristics, in vitro cytotoxicity and transfection efficiency were evaluated. To investigate the difference of transfection efficiency of various molecular weight PEI‐TA, their transfection mechanism was further investigated by confocal microscopy and competition assay. Transgenic expression in vivo was evaluated by injection into hepatic portal vein of mice.

Results

All PEI‐TA could form nanosize polyplexes with DNA and their physicochemical properties resemble each other. Their cytotoxicities were negligible compared to PEI 25k. The order of transfection efficiency was PEI 1800‐TA > PEI 600‐TA > PEI 25k‐TA. A transfection mechanism study displayed that TA could inhibit considerably the transgenic activity of PEI 1800‐TA and PEI 600‐TA, but that of PEI 25k‐TA was not inhibited. It was suggested that PEI 1800‐TA and PEI 600‐TA might translocate into the nucleus. Confocal microscopy investigation verified this suggestion. The data strongly suggested that the transfection efficiency of PEI 1800‐TA in vivo was much higher than that of PEI 25k, which was consistent with the results obtained in vitro.

Conclusions

Low molecular weight PEI‐TA could translocate into the nucleus efficiently. PEI 1800‐TA presented higher transgenic activity and it has a great potential for gene therapy as a nonviral carrier. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The production of hydrogen fuels by using sunlight is an attractive and sustainable solution to the global energy and environmental problems. Platinum (Pt) is known as the most efficient co‐catalyst in hydrogen evolution reaction (HER). However, due to its high‐cost and limited‐reserves, it is highly demanded to explore alternative non‐precious metal co‐catalysts with low‐cost and high efficiency. Transition metal disulfides (TMDs) including molybdenum disulfide and tungsten disulfide have been regarded as promising candidates to replace Pt for HER in recent years. Their unique structural and electronic properties allow them to have many opportunities to be designed as highly efficient co‐catalysts over various photo harvesting semiconductors. Recent progress in TMDs as photo‐cocatalysts in solar hydrogen production field is summarized, focusing on the effect of structural matchability with photoharvesters, band edges tunability, and phase transformation on the improvement of hydrogen production activities. Moreover, recent research efforts toward the TMDs as more energy‐efficient and economical co‐catalysts for HER are highlighted. Finally, this review concludes by critically summarizing both findings and current perspectives, and highlighting crucial issues that should be addressed in future research activities.  相似文献   

11.
An efficient synthetic strategy to 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones variously substituted in position 2 has been developed. The title compounds were synthesized in the reaction sequence involving reaction of diethyl methylphosphonate with methyl 2‐(tosylamino)benzoate, condensation of thus formed diethyl 2‐oxo‐2‐(2‐N‐tosylphenyl)ethylphosphonate with various aldehydes followed by successful application of the obtained 3‐(diethoxyphosphoryl)‐1,2‐dihydroquinolin‐4‐ols as Horner–Wadsworth–Emmons reagents for the olefination of formaldehyde. Also, enantioselective approach to the target compounds has been evaluated using 3‐dimenthoxyphosphoryl group as a chiral auxiliary. Single X‐ray crystal analysis of (2S)‐3‐(dimenthoxyphosphoryl)‐2‐phenyl‐1‐tosyldihydroquinolin‐4‐ol revealed the presence of strong resonance‐assisted hydrogen bond (RAHB). The obtained 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones were then tested for their cytotoxic activity against two leukemia cell lines NALM‐6 and HL‐60 and a breast cancer MCF‐7 cell line. All compounds showed very high cytotoxic activity with the IC50 values mostly below 1 μm in all three cancer cell lines. The selected analogs were also tested on human umbilical vein endothelial cells (HUVEC) and on human mammary gland/breast cells (MCF‐10A) to evaluate their influence on normal cells. Since one of the most serious problems in cancer chemotherapy is the development of drug resistance, the mRNA levels and activity of ABCB1 transporter considered to be the most important factor engaged in drug resistance, were evaluated in MCF‐7 cells treated with two selected analogs. Both compounds were strong ABCB1 transporter inhibitors that could prevent efflux of anticancer drugs from cancer cells.  相似文献   

12.
13.
14.
Rough‐and‐tumble play (RT) is a widespread phenomenon in mammals. Since it involves competition, whereby one animal attempts to gain advantage over another, RT runs the risk of escalation to serious fighting. Competition is typically curtailed by some degree of cooperation and different signals help negotiate potential mishaps during RT. This review provides a framework for such signals, showing that they range along two dimensions: one from signals borrowed from other functional contexts to those that are unique to play, and the other from purely emotional expressions to highly cognitive (intentional) constructions. Some animal taxa have exaggerated the emotional and cognitive interplay aspects of play signals, yielding admixtures of communication that have led to complex forms of RT. This complexity has been further exaggerated in some lineages by the development of specific novel gestures that can be used to negotiate playful mood and entice reluctant partners. Play‐derived gestures may provide new mechanisms by which more sophisticated communication forms can evolve. Therefore, RT and playful communication provide a window into the study of social cognition, emotional regulation and the evolution of communication systems.  相似文献   

15.
16.
Potassium‐based dual‐ion batteries (KDIBs) have emerged as a new generation of rechargeable batteries, due to their high cell voltage, low cost, and the natural abundance of potassium resources. However, the low capacity and poor cycling stability largely hinder the further development of KDIBs. Herein, the fabrication of hierarchically porous N‐doped carbon fibers (HPNCFs) as a free‐standing anode for high‐performance KDIBs is reported. With a free‐standing hierarchical structure (micro/meso/macropores and nanochannels) and high‐content of nitrogen doping, the HPNCFs not only provide intrinsic electron pathways and efficient ion transport channels, but also afford sufficient free space to tolerate the volume change during cycling. Consequently, the KDIBs made from a graphite cathode and an optimized HPNCFs anode deliver a high reversible capacity of 197 mAh g?1 at a specific current of 50 mA g?1, and excellent cycling stability (65 mAh g?1 after 346 cycles at a specific current of 100 mA g?1, the capacity calculation of the KDIBs is based on the mass of the anode). These results indicate that the properly designed HPNCFs can effectively improve the capacity and cycling stability of the KDIBs, indicating a great potential for applications in the field of high‐performance energy‐storage devices.  相似文献   

17.
Five new geminal aminocycloalkanephosphonic acids ( 4 – 8 ) containing both an aromatic ring and a cycloalkane ring were synthesized and evaluated as potential inhibitors of buckwheat phenylalanine ammonia‐lyase (PAL). Within the set of compounds which are related to 2‐aminoindane‐2‐phosphonic acid (AIP, 3 ), a known powerful inhibitor of PAL, racemic 1‐aminobenzocyclobutene‐1‐phosphonic acid ( 4 ), was six times weaker than AIP as an in vitro inhibitor of buckwheat PAL, but six times stronger than AIP as an in vivo inhibitor of phenylalanine‐derived anthocyanin synthesis in buckwheat.  相似文献   

18.
Whole‐cell biosensors offer potentially useful, cost‐effective systems for the in‐situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole‐cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25‐fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3–4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis.  相似文献   

19.
The goals of the subproject “molluscs” within the inter‐disciplinary research project “Indicator systems for the characterisation and prediction of ecological changes in floodplain systems” were: – develop further existing mollusc‐based indicator systems of site quality and to test their transferability, – characterise grassland sites within the recent floodplains of three study areas along the Elbe River, – analyse the relationships between indicator species‐/groups and abiotic parameters, – compile and use selected species traits in the analytical process. The results clearly show several characteristic species groups related to the hydrology of the sites (i.e. inundation and desiccation regime) and on to the degree of agricultural use. These dependencies can be interpreted by the simultaneous analysis of the species traits. “Models” are proposed, that are applicable to nature protection measures at the landscape scale. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Abstract. In France, most civil engineering and excavation projects are at present accompanied by compensatory measures with the aim of preserving biodiversity. In order to avoid the destruction of a habitat of high conservation interest in NE France, harbouring two legally protected plant species, an experiment of soil translocation was conducted on an area of 1 ha. The donor site was an extensively managed mesophilic meadow and the receiving site was a neighbouring arable land. The vegetation of the translocated meadow was described 8 and 17 months after soil translocation, and compared (1) with vegetation resulting from more classical restoration techniques tested on the arable land (natural regeneration and seed mixture sowing) and (2) with the soil seed bank and vegetation previously present on the donor site. Results showed that the soil translocation technique permitted the development of many meadow species, including two legally protected species, and few ruderal species despite a large area of bare ground. This technique seems effective in terms of number and abundance of meadow species compared to natural regeneration and commercial seed sowing. In the case of the two classical methods, species richness was lower and only widespread species were present. Topsoil translocation provides a good compensatory method to avoid habitat and species destruction. However, the study should be continued, with the aim of assessing the longer term development and stabilization of the vegetation of the translocated meadow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号