首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glutamine synthetase derived from two Neurospora crassa glutamine auxotrophs was characterized. Previous genetic studies indicated that the mutations responsible for the glutamine auxotrophy are allelic and map in chromosome V. When measured in crude extracts, both mutant strains had lower glutamine synthetase specific activity than that found in the wild-type strain. The enzyme from both auxotrophs and the wild-type strain was partially purified from cultures grown on glutamine as the sole nitrogen source, and immunochemical studies were performed in crude extracts and purified fractions. Quantitative rocket immunoelectrophoresis indicated that the activity per enzyme molecule is lower in the mutants than in the wild-type strain; immunoelectrophoresis and immunochemical titration of enzyme activity demonstrated structural differences between the enzymes from both auxotrophs. On the other hand, the monomer of glutamine synthetase of both mutants was found to be of a molecular weight similar to that of the wild-type strain. These data indicate that the mutations are located in the structural gene of N. crassa glutamine synthetase.  相似文献   

3.
Glutamine plays important roles in the interorgan transport of nitrogen, carbon and energy but little is known about glutamine metabolism in the horse. In this study we determined the tissue distribution of glutamine synthetase expression in three Standardbred mares. Expression of glutamine synthetase was highest in kidney and mammary gland, and relatively high in liver and adipose tissue. Expression was lower in gluteus muscle, thymus, colon and lung, and much lower in small intestine, pancreas and uterus. The pattern of glutamine synthetase expression in the horse is similar to that of other herbivores and it is likely that skeletal muscle, liver, adipose tissue and lungs are the major sites of net glutamine synthesis in this species. Expression did not differ between adipose tissue depots but did vary between different muscles. Expression was highest in gluteus and semimembranous muscles and much lower in diaphragm and heart muscles. The concentration of intramuscular free glutamine was inversely correlated with expression of glutamine synthetase (r=-0.81, p=0.0017). The concentration of free glutamine was much higher in heart muscle (21.6+/-0.9 micromol/g wet wt) than in gluteus muscle (4.19+0.33 micromol/g wet wt), which may indicate novel functions and/or regulatory mechanisms for glutamine in the equine heart.  相似文献   

4.
5.
Here we report a reagentless fluorescence sensing technique for glutamine in the submicromolar range based on the glutamine binding protein (QBP). The S179C mutant is labeled with the short-lived acrylodan (lifetime < 5 ns) and the long-lived tris(dibenzoylmethane) mono(5-amino-1,10-phenanthroline)europium(III) (lifetime>300 μs) at the -SH and the N-terminal positions, respectively. In the presence of glutamine the fluorescence of acrylodan is quenched, while the fluorescence of europium complex remains constant. In this report we describe an innovative technique, the so called lifetime assisted ratiometric sensing to discriminate the two fluorescence signals using minimal optics and power requirements. This method exploits the large difference between the fluorescence lifetimes of the two fluorophores to isolate the individual fluorescence from each other by alternating the modulation frequency of the excitation light between 300 Hz and 10 kHz. The result is a ratiometric optical method that does not require expensive and highly attenuating band pass filters for each of the dyes, but only one long pass filter for both. Thus, the signal to noise ratio is enhanced, and at the same time, the optical setup is simplified. The end product is a simple sensing device suitable for low-cost applications such as point-of-care diagnostics or in-the-field analysis.  相似文献   

6.
7.
Transport of glutamine by the high-affinity transport system is regulated by the nitrogen status of the medium. With high concentrations of ammonia, transport is repressed; whereas with Casamino acids, transport is elevated, showing behaviour similar to glutamine synthetase. A glutamine auxotroph, lacking glutamine synthetase activity, had elevated transport activity even in the presence of high concentrations of ammonia (and glutamine). This suggests that glutamine synthetase is involved in the regulation of the transport system. A mutant with low glutamate synthase activity had low glutamine transport and glutamine synthetase activities, which could not be derepressed. A mutant in the high-affinity glutamine transport system showed normal regulation of glutamate synthase and glutamine synthetase. Possible mechanisms for this regulation are discussed.  相似文献   

8.
9.
10.
Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins, neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters, the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap. Here we report the development of F?ster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be useful tools to analyze specificities of glutamine metabolism at the single-cell level.  相似文献   

11.
12.
1. In the absence of added ADP glutamine is transformed by pig kidney mitochondria to ammonium glutamate, which appears in the external medium. This reaction is stimulated only slightly by the addition of ADP, but under these conditions about 20% of the glutamate is oxidized to aspartate. 2. Externally added glutamate is oxidized to aspartate, and at about the same rate as glutamine. 3. The net rates of glutamine and glutamate influx into the intramitochondrial compartment are very slow. 4. The phosphate-dependent glutaminase activity of intact mitochondria is stimulated by the provision of energy. 5. The provision of energy also decreases the concentration of glutamate and increases the concentration of glutamine in the intramitochondrial compartment. These energy-linked changes in the glutamine and glutamate concentrations are of equal magnitude. 6. It is suggested that transport of glutamine and glutamate across the inner membrane of kidney mitochondria occurs by an obligatory exchange between the two metabolites, and is electrogenic. The existence of an electrogenic glutamine-glutamate anti-porter is proposed.  相似文献   

13.
The involvement of glutamine aminotransferase activity in glutamine catabolism by Saccharomyces cerevisiae under microaerophilic conditions was studied. We were able to show that there are at least two different glutamine aminotransferase activities that are differentiated genetically, by their substrate specificity (pyruvate and glyoxylate dependence), and their different modes of regulation. The pyruvate-dependent glutamine aminotransferase activity plays a major role in glutamine catabolism under microaerophilic conditions since the wild-type strain S288C showed a 10-fold higher activity in static cultures than in agitated ones. The same strain also had 3-fold higher glutaminase B activity in agitated cultures than in static ones. Pyruvate-dependent glutamine aminotransferase activity is not regulated directly by O2 itself since a rho- strain showed a high activity regardless of the extent of aeration of cultures. Finally, we were able to isolate a mutant, strain CN20, derived from the rho- strain and unable to utilize glutamine as the sole nitrogen source, which was severely affected in pyruvate-dependent but not in glyoxylate-dependent aminotransferase activity.  相似文献   

14.
15.
Roots of sunflower plants (Helianthus annuus L. var. Mammoth Russian) subjected to L12:D12, L18:D6, and L12:D12 followed by continuous light all display rhythms of about 12 hours for glutamine synthetase (GS) activity (transferase reaction) with one peak in the `light phase' and one in the `dark phase.' Root energy charge (EC = ATP+½ADP/ATP+ADP+AMP) is directly correlated with GS, but the GS rhythm is better explained as the result of a rhythmic adenine nucleotide ratio (ATP/ADP+AMP) that regulates enzyme activity through allosteric modification. When L12:D12 plants are subjected to free-running conditions in continuous darkness, only diurnal rhythms for GS and EC, with peaks in the dark phase, remain. The 12-hour root rhythms for GS and EC appear to be composed of two alternating rhythms, one a diurnal, light-dependent, incompletely circadian light phase rhythm and the other a light-independent, circadian dark phase rhythm.

Only glutamine, of the root amino acids, displays cyclical changes in concentration, maintaining under all conditions a 12-hour rhythm that is consistently synchronized with, but nearly always inversely correlated with, GS and EC rhythms.

  相似文献   

16.
A whole-cell biosensor for glutamine (GlnLux) was constructed by transforming an Escherichia coli glutamine (Gln) auxotroph with a constitutive lux reporter gene. Measurements of Gln in plant extracts using GlnLux correlated with quantification using high-performance liquid chromatography (Spearman's r = 0.95). GlnLux permitted charge-coupled-device (CCD) imaging of Gln from whole plant organs.  相似文献   

17.
18.
In certain lines of hepatoma tissue-culture cells, the extracellular glutamine concentration regulates the specific activity of glutamine synthetase. By quantifying the radioactivity in immunoprecipitated glutamine synthetase on polyacrylamide gels, we found that the rate of degradation, but not of synthesis, of glutamine synthetase is a sensitive function of extracellular glutamine. The activiy that degrades this enzyme appears to be labile.  相似文献   

19.
Synaptosomes prepared by discontinuous Ficoll gradient centrifugation were either pre-incubated with glutamine or incubated with releasing agents in the presence of glutamine. Under both conditions, KCl and 4-aminopyridine (agents with specificity toward the calcium-dependent pool) produced elevated glutamate (but not GABA) release when glutamine was included. AMPA and veratridine produced the same glutamate release in the presence or absence of glutamine. These data support the hypothesis that glutamine utilization is involved in the release of glutamate from calcium-dependent pools.  相似文献   

20.
Molecular and Cellular Biochemistry - Of the various eucaryotic tissues, where glutamine synthetase (GS) mRNA and its regulation have been investigated, the induction of GS by glucocorticoids in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号