首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Macroautophagy/autophagy has profound implications for aging. However, the true features of autophagy in the progression of aging remain to be clarified. In the present study, we explored the status of autophagic flux during the development of cell senescence induced by oxidative stress. In this system, although autophagic structures increased, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence and the activity of lysosomal proteolytic enzymes all decreased in senescent cells, indicating impaired autophagic flux with lysosomal dysfunction. The influence of autophagy activity on senescence development was confirmed by both positive and negative autophagy modulators; and MTOR-dependent autophagy activators, rapamycin and PP242, efficiently suppressed cellular senescence through a mechanism relevant to restoring autophagic flux. By time-phased treatment of cells with the antioxidant N-acetylcysteine (NAC), the mitochondria uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and ambroxol, a reagent with the effect of enhancing lysosomal enzyme maturation, we found that mitochondrial dysfunction plays an initiating role, while lysosomal dysfunction is more directly responsible for autophagy impairment and senescence. Interestingly, the effect of rapamycin on autophagy flux is linked to its role in functional revitalization of both mitochondrial and lysosomal functions. Together, this study demonstrates that autophagy impairment is crucial for oxidative stress-induced cell senescence, thus restoring autophagy activity could be a promising way to retard senescence.  相似文献   

2.
Cellular senescence, the irreversible cell cycle arrest observed in somatic cells, is an important driver of age‐associated diseases. Mitochondria have been implicated in the process of senescence, primarily because they are both sources and targets of reactive oxygen species (ROS). In the heart, oxidative stress contributes to pathological cardiac ageing, but the mechanisms underlying ROS production are still not completely understood. The mitochondrial enzyme monoamine oxidase‐A (MAO‐A) is a relevant source of ROS in the heart through the formation of H2O2 derived from the degradation of its main substrates, norepinephrine (NE) and serotonin. However, the potential link between MAO‐A and senescence has not been previously investigated. Using cardiomyoblasts and primary cardiomyocytes, we demonstrate that chronic MAO‐A activation mediated by synthetic (tyramine) and physiological (NE) substrates induces ROS‐dependent DNA damage response, activation of cyclin‐dependent kinase inhibitors p21cip, p16ink4a, and p15ink4b and typical features of senescence such as cell flattening and SA‐β‐gal activity. Moreover, we observe that ROS produced by MAO‐A lead to the accumulation of p53 in the cytosol where it inhibits parkin, an important regulator of mitophagy, resulting in mitochondrial dysfunction. Additionally, we show that the mTOR kinase contributes to mitophagy dysfunction by enhancing p53 cytoplasmic accumulation. Importantly, restoration of mitophagy, either by overexpression of parkin or inhibition of mTOR, prevents mitochondrial dysfunction and induction of senescence. Altogether, our data demonstrate a novel link between MAO‐A and senescence in cardiomyocytes and provides mechanistic insights into the potential role of MAO‐dependent oxidative stress in age‐related pathologies.  相似文献   

3.
4.
Paradoxical observations have been made regarding the role of caveolin‐1 (Cav‐1) during cellular senescence. For example, caveolin‐1 deficiency prevents reactive oxygen species‐induced cellular senescence despite mitochondrial dysfunction, which leads to senescence. To resolve this paradox, we re‐addressed the role of caveolin‐1 in cellular senescence in human diploid fibroblasts, A549, HCT116, and Cav‐1?/? mouse embryonic fibroblasts. Cav‐1 deficiency (knockout or knockdown) induced cellular senescence via a p53‐p21‐dependent pathway, downregulating the expression level of the cardiolipin biosynthesis enzymes and then reducing the content of cardiolipin, a critical lipid for mitochondrial respiration. Our results showed that Cav‐1 deficiency decreased mitochondrial respiration, reduced the activity of oxidative phosphorylation complex I (CI), inactivated SIRT1, and decreased the NAD+/NADH ratio. From these results, we concluded that Cav‐1 deficiency induces premature senescence via mitochondrial dysfunction and silent information regulator 2 homologue 1 (SIRT1) inactivation.  相似文献   

5.
Mitochondrial defects have been found in aging and several age‐related diseases. Mice with a homozygous mutation in the exonuclease encoding domain of mitochondrial DNA polymerase gamma (Polgm/m) are prone to age‐dependent accumulation of mitochondrial DNA mutations and have shown a broad spectrum of aging‐like phenotypes. However, the mechanism of cardiac phenotypes in relation to the role of mitochondrial DNA mutations and oxidative stress in this mouse model has not been fully addressed. We demonstrate age‐dependent cardiomyopathy in Polgm/m mice, which by 13–14 months of age displays marked cardiac hypertrophy and dilatation, impairment of systolic and diastolic function, and increased cardiac fibrosis. This age‐dependent cardiomyopathy is associated with increases in mitochondrial DNA (mtDNA) deletions and protein oxidative damage, increased expression of apoptotic and senescence markers, as well as a decline in signaling for mitochondrial biogenesis. The relationship of these changes to mitochondrial reactive oxygen species (ROS) was tested by crossing Polgm/m mice with mice that overexpress mitochondrial targeted catalase (mCAT). All of the above phenotypes were partially rescued in Polgm/m/mCAT mice. These data indicate that accumulation of mitochondrial DNA damage with age can lead to cardiomyopathy and that this phenotype is partly mediated by mitochondrial oxidative stress.  相似文献   

6.
7.
Tungstate (W) is recognized as an agent of environmental pollution and a substitute to depleted uranium. According to some preliminary studies, tungstate toxicity is related to the formation of reactive oxygen species (ROS) under abnormal pathological conditions. The kidneys and liver are the main tungstate accumulation sites and important targets of tungstate toxicity. Since the mitochondrion is the main ROS production site, we evaluated the mechanistic toxicity of tungstate in isolated mitochondria for the first time, following a two‐step ultracentrifugation method. Our findings demonstrated that tungstate‐induced mitochondrial dysfunction is related to the increased formation of ROS, lipid peroxidation, and potential membrane collapse, correlated with the amelioration of adenosine triphosphate and glutathione contents. The present study indicated that mitochondrial dysfunction was associated with disruptive effects on the mitochondrial respiratory chain and opening of mitochondrial permeability transition (MPT) pores, which is correlated with cytochrome c release. Our findings suggest that high concentrations of tungstate (2 mM)‐favored MPT pore opening in the inner membranes of liver and kidney mitochondria of rats. Besides, the results indicated higher tungstate susceptibility in the kidneys, compared with the liver.  相似文献   

8.
Alessandro Luciani 《Autophagy》2020,16(6):1159-1161
ABSTRACT

Methylmalonic acidemia (MMA) is an autosomal recessive inborn error of metabolism due to the deficiency of mitochondrial MMUT (methylmalonyl-CoA mutase) – an enzyme that mediates the cellular breakdown of certain amino acids and lipids. The loss of MMUT leads to the accumulation of toxic organic acids causing severe organ dysfunctions and life-threatening complications. The mechanisms linking MMUT deficiency, mitochondrial alterations and cell toxicity remain uncharacterized. Using cell and animal-based models, we recently unveiled that MMUT deficiency impedes the PINK1-induced translocation of PRKN/Parkin to MMA-damaged mitochondria, thereby halting their delivery and subsequent degradation by macroautophagy/autophagy-lysosome systems. In turn, this defective mitophagy process instigates the accumulation of dysfunctional mitochondria that spark epithelial distress and tissue damage. Correction of PINK1-directed mitophagy defects or mitochondrial dysfunctions rescues epithelial distress in MMA cells and alleviates disease-relevant phenotypes in mmut?deficient zebrafish. Our findings suggest a link between primary MMUT deficiency and diseased mitochondria, mitophagy dysfunction and cell distress, offering potential therapeutic perspectives for MMA and other metabolic diseases.  相似文献   

9.
Mesenchymal stem cells (MSCs) are a popular cell source for stem cell‐based therapy. However, continuous ex vivo expansion to acquire large amounts of MSCs for clinical study induces replicative senescence, causing decreased therapeutic efficacy in MSCs. To address this issue, we investigated the effect of melatonin on replicative senescence in MSCs. In senescent MSCs (late passage), replicative senescence decreased mitophagy by inhibiting mitofission, resulting in the augmentation of mitochondrial dysfunction. Treatment with melatonin rescued replicative senescence by enhancing mitophagy and mitochondrial function through upregulation of heat shock 70 kDa protein 1L (HSPA1L). More specifically, we found that melatonin‐induced HSPA1L binds to cellular prion protein (PrPC), resulting in the recruitment of PrPC into the mitochondria. The HSPA1L‐PrPC complex then binds to COX4IA, which is a mitochondrial complex IV protein, leading to an increase in mitochondrial membrane potential and anti‐oxidant enzyme activity. These protective effects were blocked by knockdown of HSPA1L. In a murine hindlimb ischemia model, melatonin‐treated senescent MSCs enhanced functional recovery by increasing blood flow perfusion, limb salvage, and neovascularization. This study, for the first time, suggests that melatonin protects MSCs against replicative senescence during ex vivo expansion for clinical application via mitochondrial quality control.  相似文献   

10.
11.
12.
Mitochondria are dynamic organelles, the morphology of which results from an equilibrium between two opposing processes, fusion and fission. Mitochondrial fusion relies on dynamin‐related GTPases, the mitofusins (MFN1 and 2) in the outer mitochondrial membrane and OPA1 (optic atrophy 1) in the inner mitochondrial membrane. Apart from a role in the maintenance of mitochondrial DNA, little is known about the physiological role of mitochondrial fusion. Here we report that mitochondria hyperfuse and form a highly interconnected network in cells exposed to selective stresses. This process precedes mitochondrial fission when it is triggered by apoptotic stimuli such as UV irradiation or actinomycin D. Stress‐induced mitochondrial hyperfusion (SIMH) is independent of MFN2, BAX/BAK, and prohibitins, but requires L‐OPA1, MFN1, and the mitochondrial inner membrane protein SLP‐2. In the absence of SLP‐2, L‐OPA1 is lost and SIMH is prevented. SIMH is accompanied by increased mitochondrial ATP production and represents a novel adaptive pro‐survival response against stress.  相似文献   

13.
Alzheimer’s, Parkinson’s and Huntington’s disease, and amyotrophic lateral sclerosis are the most relevant neurodegenerative syndromes worldwide. The identification of the etiology and additional factors contributing to the onset and progression of these diseases is of great importance in order to develop both preventive and therapeutic intervention. A common feature of these pathologies is the formation of aggregates, containing mutated and/or misfolded proteins, in specific subsets of neurons, which progressively undergo functional impairment and die. The relationship between protein aggregation and the molecular events leading to neurodegeneration has not yet been clarified. In the last decade, several lines of evidence pointed to a major role for mitochondrial dysfunction in the onset of these pathologies. Here, we review how proteomics has been applied to neurodegenerative diseases in order to characterize the relationship existing between protein aggregation and mitochondrial alterations. Moreover, we highlight recent advances in the use of proteomics to identify protein modifications caused by oxidative stress. Future developments in this field are expected to significantly contribute to the full comprehension of the molecular mechanisms at the heart of neurodegeneration.  相似文献   

14.
Diabetic retinopathy (DR) and age‐related macular degeneration (AMD) are two important leading causes of acquired blindness in developed countries. As accumulation of advanced glycation end products (AGEs) in retinal pigment epithelial (RPE) cells plays an important role in both DR and AMD, and the methylglyoxal (MGO) within the AGEs exerts irreversible effects on protein structure and function, it is crucial to understand the underlying mechanism of MGO‐induced RPE cell death. Using ARPE‐19 as the cell model, this study revealed that MGO induces RPE cell death through a caspase‐independent manner, which relying on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) loss, intracellular calcium elevation and endoplasmic reticulum (ER) stress response. Suppression of ROS generation can reverse the MGO‐induced ROS production, MMP loss, intracellular calcium increase and cell death. Moreover, store‐operated calcium channel inhibitors MRS1845 and YM‐58483, but not the inositol 1,4,5‐trisphosphate (IP3) receptor inhibitor xestospongin C, can block MGO‐induced ROS production, MMP loss and sustained intracellular calcium increase in ARPE‐19 cells. Lastly, inhibition of ER stress by salubrinal and 4‐PBA can reduce the MGO‐induced intracellular events and cell death. Therefore, our data indicate that MGO can decrease RPE cell viability, resulting from the ER stress‐dependent intracellular ROS production, MMP loss and increased intracellular calcium increase. As MGO is one of the components of drusen in AMD and is the AGEs adduct in DR, this study could provide a valuable insight into the molecular pathogenesis and therapeutic intervention of AMD and DR.  相似文献   

15.
16.
Histone acetyltransferase 1 (Hat1) is responsible for the acetylation of newly synthesized histone H4 on lysines 5 and 12 during the process of chromatin assembly. To understand the broader biological role of Hat1, we have generated a conditional mouse knockout model of this enzyme. We previously reported that Hat1 is required for viability and important for mammalian development and genome stability. In this study, we show that haploinsufficiency of Hat1 results in a significant decrease in lifespan. Defects observed in Hat1+/? mice are consistent with an early‐onset aging phenotype. These include lordokyphosis (hunchback), muscle atrophy, minor growth retardation, reduced subcutaneous fat, cancer, and paralysis. In addition, the expression of Hat1 is linked to the normal aging process as Hat1 mRNA and protein becomes undetectable in many tissues in old mice. At the cellular level, fibroblasts from Hat1 haploinsufficient embryos undergo early senescence and accumulate high levels of p21. Hat1+/? mouse embryonic fibroblasts (MEFs) display modest increases in endogenous DNA damage but have significantly higher levels of reactive oxygen species (ROS). Consistently, further studies show that Hat1?/? MEFs exhibit mitochondrial defects suggesting a critical role for Hat1 in mitochondrial function. Taken together, these data show that loss of Hat1 induces multiple hallmarks of early‐onset aging.  相似文献   

17.
Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial‐targeted peptide SS‐31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour. Young (5 month old) and old (27 month old) mice were injected intraperitoneally with either saline or 3 mg kg?1 of SS‐31. Skeletal muscle mitochondrial energetics were measured in vivo one hour after injection using a unique combination of optical and 31P magnetic resonance spectroscopy. Age‐related declines in resting and maximal mitochondrial ATP production, coupling of oxidative phosphorylation (P/O), and cell energy state (PCr/ATP) were rapidly reversed after SS‐31 treatment, while SS‐31 had no observable effect on young muscle. These effects of SS‐31 on mitochondrial energetics in aged muscle were also associated with a more reduced glutathione redox status and lower mitochondrial H2O2 emission. Skeletal muscle of aged mice was more fatigue resistant in situ one hour after SS‐31 treatment, and eight days of SS‐31 treatment led to increased whole‐animal endurance capacity. These data demonstrate that SS‐31 represents a new strategy for reversing age‐related deficits in skeletal muscle with potential for translation into human use.  相似文献   

18.
19.
To test the hypothesis that an impaired mitochondrial function is associated with altered central venous oxygen saturation (ScvO2), venous-to-arterial carbon dioxide tension difference (delta PCO2) or serum lactate in sepsis patients. This prospective cohort study was conducted in a single tertiary emergency department between April 2017 and March 2019. Patients with suspected sepsis were included in the study. Serum lactate was obtained in sepsis, ScvO2 and delta PCO2 were evaluated in septic shock patients. Mitochondrial function was determined from the peripheral blood mononuclear cells. Forty-six patients with suspected sepsis were included. Of these, twenty patients were septic shock. Mitochondrial oxidative stress levels were increased in the high ScvO2 group (ScvO2 > 80%, n = 6), compared with the normal (70%-80%, n = 9) and low ScvO2 (<70%, n = 5) groups. A strong linear relationship was observed between the mitochondrial oxidative stress and ScvO2 (r = .75; P = .01). However, mitochondrial respiration was increased in the low ScvO2 group. In addition, mitochondrial complex II protein levels were significantly decreased in the high ScvO2 group (P < .05). Additionally, there was no correlation between serum lactate, delta PCO2, and mitochondria oxidative stress or mitochondria function. ScvO2 can be potentially useful for developing new therapeutics to reduce mitochondrial dysfunction in septic shock patient.  相似文献   

20.
Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere erosion and mitochondrial injury, leading to impaired cellular functions and cell death. Whether oxidative stress‐mediated telomere erosion induces mitochondrial injury, or vice versa, in human T cells—the major effectors of host adaptive immunity against infection and malignancy—is poorly understood due to the pleiotropic effects of ROS. Here we employed a novel chemoptogenetic tool that selectively produces a single oxygen (1O2) only at telomeres or mitochondria in Jurkat T cells. We found that targeted 1O2 production at telomeres triggered not only telomeric DNA damage but also mitochondrial dysfunction, resulting in T cell apoptotic death. Conversely, targeted 1O2 formation at mitochondria induced not only mitochondrial injury but also telomeric DNA damage, leading to cellular crisis and apoptosis. Targeted oxidative stress at either telomeres or mitochondria increased ROS production, whereas blocking ROS formation during oxidative stress reversed the telomeric injury, mitochondrial dysfunction, and cellular apoptosis. Notably, the X‐ray repair cross‐complementing protein 1 (XRCC1) in the base excision repair (BER) pathway and multiple mitochondrial proteins in other cellular pathways were dysregulated by the targeted oxidative stress. By confining singlet 1O2 formation to a single organelle, this study suggests that oxidative stress induces dual injury in T cells via crosstalk between telomeres and mitochondria. Further identification of these oxidation pathways may offer a novel approach to preserve mitochondrial functions, protect telomere integrity, and maintain T cell survival, which can be exploited to combat various immune aging‐associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号