首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel bis-coumarin derivatives containing triazole moiety as a linker between the alkyl chains was synthesized and their inhibitory activity against the human carbonic anhydrase (hCA) isoforms I, II, IX and XII were evaluated. In addition, cytotoxic effects of the synthesized compounds on renal adenocarcinoma (769P), hepatocellular carcinoma (HepG2) and breast adeno carcinoma (MDA-MB-231) cell lines were examined. While the hCA I and II isoforms were inhibited in the micromolar range, the tumor-associated isoform hCA IX and XII were inhibited in the high nanomolar range. 4-methyl-7-((1-(12-((2-oxo-2H-chromen-7-yl)oxy)dodecyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (5p) showed the strongest inhibitory activity against hCA IX with the Ki of 144.6 nM and 4-methyl-7-((1-(10-((2-oxo-2H-chromen-7-yl)oxy)decyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (5n) exhibited the highest hCA XII inhibition with the Ki of 71.5 nM. In order to better understand the inhibitory profiles of studied molecules, multiscale molecular modelling approaches were applied. Low energy docking poses of studied molecules at the binding sites of targets have been predicted. In addition, electrostatic potential surfaces (ESP) for binding sites were also generated to understand interactions between proteins and active ligands.  相似文献   

2.
Sixteen disubstituted 1,2,3-triazoles were prepared using the Huisgen cycloaddition reaction and evaluated as inhibitors against caspase-3. The two most potent inhibitors were found to be (S)-1-((1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1H-1,2,3-triazol-4-yl)methyl)-5-((2-(methoxymethyl)pyrrolidin-1-yl)sulfonyl)indoline-2,3-dione (7f) and (S)-1-((1-benzyl-1H-1,2,3-triazol-5-yl)methyl)-5-((2-(methoxymethyl)pyrrolidin-1-yl)sulfonyl)indoline-2,3-dione (8g) with IC50-values of 17 and 9 nM, respectively. Lineweaver-Burk plots revealed that these two triazoles show competitive inhibitory mechanism against caspase-3.  相似文献   

3.
A series of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)nicotinamides (4) was synthesized and tested for their anticancer activity against a panel of 60 human cancer cell lines. Some of the representative compounds such as 4a, 4b, 4f, 4g, 4i and 4t were selected for the five dose study and amongst them 4g and 4i displayed significant anticancer activity with GI50 values ranging from 0.25 to 8.34 and 1.42 to 5.86 μM, respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. The most active compound in this series 4g also inhibited tubulin polymerization with IC50 value 1.93 μM superior to that of E7010. Moreover, assay to investigate the effect on caspase-9, Hoechst staining and DNA fragmentation analysis suggested that these compounds induced cell death by apoptosis. Docking experiments showed that they interact and bind efficiently with tubulin protein. Overall, the results demonstrate that N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)nicotinamide scaffold possess anticancer property by inhibiting the tubulin polymerization.  相似文献   

4.
A series of cis-restricted 1,4- and 1,5-disubstituted 1,2,3-triazole analogs of combretastatin A-4 (1) have been prepared. Cytotoxicity and tubulin inhibition studies showed that 2-methoxy-5-((5-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)aniline (5e) and 2-methoxy-5-(1-(3,4,5-trimethoxybenzyl)-1H-1,2,3-triazol-5-yl)aniline (6e) were two of the most active compounds. Molecular modeling studies revealed that the N-2 and N-3 atoms in the triazole rings in 5e and 6e did not form hydrogen bonds with the amino acids in the anticipated pharmacophore.  相似文献   

5.
The influence of (1H-1,2,3-triazol-1-yl)-1,2,5-oxadiazole derivatives: 4-amino-3-(5-methyl-4-ethoxycarbonyl-(1H-1,2,3-triazol-1-yl)-1,2,5-oxadiazole (TF4CH3) and 4,4′-bis(5-methyl-4-ethoxycarbo-nyl-1H-1,2,3-triazol-1-yl)-3,3′-azo-1,2,5-oxadiazole (2TF4CH3) on stimulation of human platelet soluble guanylate cyclase by YC-1, NO donors (sodium nitroprusside, SNP, and spermine NONO) and on a synergistic increase of NO-dependent activation of the enzyme in the presence of YC-1 has been investigated. Both compounds increased guanylate cyclase activation by YC-1, potentiated guanylate cyclase stimulation by NO donors and increased the synergistic effect of YC-1 on the NO-dependent activation of soluble guanylate cyclase. The similarity in the properties of the examined 1,2,3-triazol-1-yl-1,2,5-oxadiazole derivatives with that of YC-1 and a possible mechanism underlying the recognized properties of compounds used are discussed.  相似文献   

6.
GSK-3 specific inhibitors are promising candidates for the treatment of devastating pathologies such as diabetes, neurodegenerative diseases and cancers. We have synthesized a library of pyrimidin-4-one-1,2,3-triazole conjugates using click-chemistry approach and evaluated them as glycogen synthase kinase-3β inhibitors. Compounds 3g, 3j, 3n and 3r were found to be most potent among the eighteen pyrimidin-4-one-1,2,3-triazole conjugates synthesized and they were further evaluated for their in vivo anti-depressant activity. Compound 3n (2-((1-(3,4-dimethylphenyl)-1H-1,2,3-triazol-4-yl)methylthio)-3-methyl-6-phenylpyrimidin-4(3H)-one) exhibited the most potent inhibitory activity against GSK-3β with IC50 value of 82 nM and was also found to exhibit significant antidepressant activity at 50 mg/kg, when compared with fluoxetine, a known antidepressant drug. The molecular docking studies were performed to elucidate the binding modes of the compounds with the GSK-3β target and two crucial interactions namely, hydrogen bond formation with Val 135 and Lys 183 residues in the active site of GSK-3β were observed.  相似文献   

7.
Novel 1-phenyl-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole derivatives were synthesized by click chemistry reaction and screened for antimicrobial activity against grampositive and gram-negative bacterial and fungal species. All the compounds were characterized by 1H and 13C NMR, IR, and mass spectral data. The results of antibacterial study indicated that 1-(4-nitrophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole, 1-(4-(4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)phenyl)ethanone, 1-(2,6-dichloro-4-nitrophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole, and 1-(2-methoxy-4-nitrophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole showed appreciable antibacterial activity while 1-(4-fluorophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy) methyl)-1H-1,2,3-triazole, 1-(2,6-dichloro-4-nitrophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole, and 1-(4-methoxyphenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole emerged as the most potential antifungal agents.  相似文献   

8.
In the present study, electrospray ionization mass spectrometry (ESI-MS) and spectroscopy have been used to evaluate the non-covalent interaction, stoichiometry, and selectivity of two synthetic coumarin-attached nucleoside and non-nucleoside 1,2,3-triazoles, namely, (1-(5-(hydroxymethyl)-4-(4-((2-oxo-2H-chromen-4-yloxy)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-furan-2-yl)5-methyl pyrimidine-2,4(1H,3H)-dione (Tr1) and 4-((1-((-1-methyl-1H-indol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (Tr2) with two different human telomeric intermolecular G-quadruplex DNA structures formed by d(T2AG3) and d(T2AG3)2 sequences. ESI-MS studies indicate that Tr1 specifically interacts with four-stranded intermolecular parallel quadruplex complex, whereas Tr2 interacts with two hairpin as well as four-stranded intermolecular parallel quadruplex complexes. UV–Visible spectroscopic studies suggest that Tr1 and Tr2 interact with G-quadruplex structure and unwind them. Job plots show that stoichiometry of ligand:quadruplex DNA is 1:1. Circular dichroism (CD) studies of G-quadruplex DNA and Tr1/Tr2 ligands manifest that they unfold DNA on interaction. Fluorescence studies demonstrate that ligand molecules intercalate between the two stacks of quadruplex DNA and non-radiative energy transfer occurs between the excited ligand molecules (donor) and quadruplex DNA (acceptor), resulting in enhancement of fluorescence emission intensity. Thus, these studies suggest that nucleoside and non-nucleoside ligands efficiently interact with d(T2AG3) and d(T2AG3)2 G-quadruplex DNA but the interaction is not alike with all kinds of quadruplex DNA, this is probably due to the variation in the pharmacophores and structure of the ligand molecules.  相似文献   

9.
The synthesis and characterization of the cationic complex [Pd(η3-C3H5)(2-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)pyridine)](BF4) (2) are reported. The solid-state structure of 2 has been unambiguously confirmed by single-crystal X-ray diffraction analysis. 1H NMR spectroscopy reveals that in solution complex 2 is dynamic and that syn-syn, anti-anti exchange of the allyl protons occurs. Complex 2 exhibits good activity in the Suzuki-Miyaura coupling of aryl bromides with phenyl boronic acid.  相似文献   

10.
Alzheimer’s disease (AD) is a well-known neurodegenerative disorder affecting millions of old people worldwide and the corresponding epidemiological data highlights the significance of the disease. As AD is a multifactorial illness, various single-target directed drugs that have reached clinical trials have failed. Therefore, various factors associated with outset of AD have been considered in targeted drug discovery and development. In this work, a wide range of 1,2,3-triazole-chromenone carboxamides were designed, synthesized, and evaluated for their cholinesterase inhibitory activity. Among them, N-(1-benzylpiperidin-4-yl)-7-((1-(3,4-dimethylbenzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-oxo-2H-chromene-3-carboxamide (11b) showed the best acetylcholinesterase inhibitory activity (IC50 = 1.80 µM), however, it was inactive toward butyrylcholinesterase. It should be noted that compound 11b was evaluated for its BACE1 inhibitory activity and calculated IC50 = 21.13 µM confirmed desired inhibitory activity. Also, this compound revealed satisfactory neuroprotective effect against H2O2-induced cell death in PC12 neurons at 50 µM as well as metal chelating ability toward Fe2+, Cu2+, and Zn2+ ions.  相似文献   

11.
Multi-drug resistant tuberculosis (MDR-TB) represents a growing problem for global healthcare systems. In addition to 1.3 million deaths in 2018, the World Health Organisation reported 484,000 new cases of MDR-TB. Isoniazid is a key anti-TB drug that inhibits InhA, a crucial enzyme in the cell wall biosynthesis pathway and identical in Mycobacterium tuberculosis and M. bovis. Isoniazid is a pro-drug which requires activation by the enzyme KatG, mutations in KatG prevent activation and confer INH-resistance. ‘Direct inhibitors’ of InhA are attractive as they would circumvent the main clinically observed resistance mechanisms. A library of new 1,5-triazoles, designed to mimic the structures of both triclosan molecules uniquely bound to InhA have been synthesised. The inhibitory activity of these compounds was evaluated using isolated enzyme assays with 2 (5-chloro-2-(4-(5-(((4-(4-chloro-2-hydroxyphenoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) exhibiting an IC50 of 5.6 µM. Whole-cell evaluation was also performed, with 11 (5-chloro-2-(4-(5-(((4-(cyclopropylmethoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) showing the greatest potency, with an MIC99 of 12.9 µM against M. bovis.  相似文献   

12.
In this work, a new series of arysulfonylhydrazine-1H-1,2,3-triazole derivatives were synthesized, and their ability to inhibit the in vitro replication of HSV-1 was evaluated. Among the 1,2,3-triazole derivatives, 1-[(5″-methyl-1″-(4?-fluorophenylamino)-1H-1,2,3-triazol-4″-yl)carbonyl]-2-(4'-methylphenylsulfonyl)hydrazine and 1-[(5'-methyl-1'-(2″,5″-dichlorophenylamino)-1H-1,2,3-triazol-4'-yl)carbonyl]-2-(phenylsulfonyl)hydrazine, with IC(50) values of 1.30 and 1.26 μM, respectively, displayed potent activity against HSV-1. Because these compounds have low cytotoxicity, their selectivity indices are high. Under the assay conditions, they have better performance than does the reference compound acyclovir. The structures of all of the compounds were confirmed by one- and two-dimensional NMR techniques ((1)H, (13)C-APT, COSY-(1)H×(1)H and HETCOR (1)J(CH)) and by elemental analysis.  相似文献   

13.
Malaria remains a major public health problem worldwide, and it is responsible for high rates of morbidity and mortality. Resistance to current antimalarial drugs has been identified, and new drugs are urgently needed. In this study, we designed and synthesized seventeen novel quinolines based on the structures of mefloquine ((2,8-bis(trifluoromethyl)quinolin-4-yl)(piperidin-2-yl)methanol) and amodiaquine (4-((7-chloroquinolin-4-yl)amino)-2-((diethylamino)methyl)phenol) using ring bioisosteric replacement and molecular hybridization of the functional groups. The compounds were evaluated in vitro against Plasmodium falciparum and in vivo in mice infected with P. berghei. All derivatives presented anti-P. falciparum activity with IC50 values ranging from 0.083 to 33.0?µM. The compound with the best anti-P. falciparum activity was N-(5-methyl-4H-1,2,4-triazol-3-yl)-2,8-bis(trifluoromethyl)quinolin-4-amine (12) which showed an IC50 of 0.083?µM. The three most active compounds were selected for antimalarial activity tests against P. berghei-infected mice. Compound 12 was the most active on the 5th day after infection, reducing parasitemia by 66%, which is consistent with its in vitro activity. This is an important result as 12, a simpler molecule than mefloquine, does not contain the stereogenic center, and consequently, its synthesis in the laboratory is easier and less expensive. This system proved promising for the design of potential antimalarial compounds.  相似文献   

14.
Tpl2 (cot/MAP3K8) is an upstream kinase of MEK in the ERK pathway. It plays an important role in Tumor Necrosis Factor-α (TNF-α) production and signaling. We have discovered that 8-halo-4-(3-chloro-4-fluoro-phenylamino)-6-[(1H-[1,2,3]triazol-4-ylmethyl)-amino]-quinoline-3-carbonitriles (4) are potent inhibitors of this enzyme. In order to improve the inhibition of TNF-α production in LPS-stimulated human blood, a series of analogs with a variety of substitutions around the triazole moiety were studied. We found that a cyclic amine group appended to the triazole ring could considerably enhance potency, aqueous solubility, and cell membrane permeability. Optimization of these cyclic amine groups led to the identification of 8-chloro-4-(3-chloro-4-fluorophenylamino)-6-((1-(1-ethylpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)methylamino)quinoline-3-carbonitrile (34). In a LPS-stimulated rat inflammation model, compound 34 showed good efficacy in inhibiting TNF-α production.  相似文献   

15.
A novel method for 18F-radiolabeling of oligodeoxynucleotides (ODNs) by a Cu-catalyzed Huisgen reaction has been developed by using the lowest possible amount of the precursor biomolecule for the realization of stoichiometry-oriented PET (positron emission tomography) chemistry. Under the optimized cyclization conditions of p- or m-azido([18F]fluoromethyl)benzene and alkyne-substituted ODN (20 nmol) at 40 °C for 15 min in the presence of CuSO4, TBTA [tris((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine], and sodium ascorbate (2:1:2), the synthesis of 18F-labeled ODNs with sufficiently high radioactivities of 2.1-2.5 GBq and specific radioactivities of 1800-2400 GBq/??mol have been accomplished for use in animal and human PET studies.  相似文献   

16.
A series of 4-substituted 4-(1H-1,2,3-triazol-1-yl)piperidine building blocks was synthesized and introduced to the C7 position of the quinolone core, 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid, to afford the corresponding fluoroquinolones in 40–83% yield. The antibacterial activity of these new fluoroquinolones was evaluated using a standard broth microdilution technique. Among them, the quinolone 1-cyclopropyl-6-fluoro-7-(4-(4-formyl-1H-1,2,3-triazol-1-yl)piperidin-1-yl)-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid (34.15) exhibited comparable antibacterial activity against quinolone-susceptible and multidrug-resistant strains, especially to Staphylococcus aureus and Staphylococcus epidermidis, in comparison with ciprofloxacin and vancomycin.  相似文献   

17.
New series of triazole-tetrahydropyrimidinone(thione) hybrids ( 9a – g ) were synthesized. FT-IR, 1H-NMR, 13C-NMR, elemental analysis and mass spectroscopic studies characterized the structures of the synthesized compounds. Then, the synthesized compounds were screened to determine the urease inhibitory activity. Methyl 4-(4-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate ( 9c ) exhibited the highest urease inhibitory activity (IC50=25.02 μM) among the compounds which was almost similar to thiourea as standard (IC50=22.32 μM). The docking study of the screened compounds demonstrated that these compounds fit well in the urease active site. Based on the docking study, compound 9c with the highest urease inhibitory activity showed chelates with both Ni2+ ions of the urease active site. Moreover, the molecular dynamic study of the most potent compounds showed that they created important interactions with the active site flap residues, His322, Cys321, and Met317.  相似文献   

18.
Russian Journal of Bioorganic Chemistry - A series of 1-((1aryl)-1H-1,2,3-triazol-4-yl)methyl)quinoxalin-2(1H)-ones have been synthesized in moderate to high yields and evaluated for their...  相似文献   

19.
A series of novel 1,2,3-triazole-adamantylacetamide hybrids 5au, designed by combining bioactive fragments from antitubercular I-A09 and substituted adamantyl urea, were synthesized using copper catalyzed click chemistry. N-(1-Adamantyl)-2-azido acetamide 3 prepared from 1-adamantylamine was reacted with a series of alkyl/aryl acetylenes in the presence of copper sulfate and sodium ascorbate to give new analogues 5au in very good yields. Evaluation of all new compounds for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC27294), resulted N-(1-adamantan-1-yl)-2-(4-(phenanthren-2-yl)-1H-1,2,3-triazol-1-yl)acetamide (5t) as most promising lead MIC: 3.12 μg/mL) with selectivity index >15.  相似文献   

20.
A series of (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-dione (9a9m) and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (10a10i) derivatives that incorporate a variety of aromatic substituents in both the indole and N-benzyl moieties have been synthesized. These analogs were evaluated for their radiosensitization activity against the HT-29 cell line. Three analogs, 10a, 10b, and 10c were identified as the most potent radiosensitizing agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号