首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new 2-aminonaphthoquinones and related compounds were synthesized and evaluated in vitro as trypanocidal and cytotoxic agents. Some tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity and selectivity as compared with current trypanocidal drug, nifurtimox. Compound 4l exhibit higher selectivity than nifurtimox against Trypanosoma cruzi in comparison with Vero cells. Some of the synthesized quinones were tested against cancer cells and normal fibroblasts, showing that certain chemical modifications on the naphthoquinone moiety induce and excellent increase the selectivity index of the cytotoxicity (4g and 10). The results presented here show that the anti-T. cruzi activity of 2-aminonaphthoquinones derivatives can be improved by the replacement of the benzene ring by a pyridine moiety. Interestingly, the presence of a chlorine atom at C-3 and a highly lipophilic alkyl group or aromatic ring are newly observed elements that should lead to the discovery of more selective cytotoxic and trypanocidal compounds.  相似文献   

2.
As an extension of our project aimed at the search for new chemotherapeutic agents against Chagas disease and toxoplasmosis, several 1,1-bisphosphonates were designed, synthesized and biologically evaluated against Trypanosoma cruzi and Toxoplasma gondii, the etiologic agents of these diseases, respectively. In particular, and based on the antiparasitic activity exhibited by 2-alkylaminoethyl-1,1-bisphosphonates targeting farnesyl diphosphate synthase, a series of linear 2-alkylaminomethyl-1,1-bisphosphonic acids (compounds 2133), that is, the position of the amino group was one carbon closer to the gem-phosphonate moiety, were evaluated as growth inhibitors against the clinically more relevant dividing form (amastigotes) of T. cruzi. Although all of these compounds resulted to be devoid of antiparasitic activity, these results were valuable for a rigorous SAR study. In addition, unexpectedly, the synthetic designed 2-cycloalkylaminoethyl-1,1-bisphosphonic acids 4749 were free of antiparasitic activity. Moreover, long chain sulfur-containing 1,1-bisphosphonic acids, such as compounds 5456, 59, turned out to be nanomolar growth inhibitors of tachyzoites of T. gondii. As many bisphosphonate-containing molecules are FDA-approved drugs for the treatment of bone resorption disorders, their potential nontoxicity makes them good candidates to control American trypanosomiasis and toxoplasmosis.  相似文献   

3.
As part of our project pointed at the search of new antiparasitic agents against American trypanosomiasis (Chagas disease) and toxoplasmosis a series of 2-alkylaminoethyl-1-hydroxy-1,1-bisphosphonic acids has been designed, synthesized and biologically evaluated against the etiologic agents of these parasitic diseases, Trypanosoma cruzi and Toxoplasma gondii, respectively, and also towards their target enzymes, T. cruzi and T. gondii farnesyl pyrophosphate synthase (FPPS), respectively. Surprisingly, while most pharmacologically active bisphosphonates have a hydroxyl group at the C-1 position, the additional presence of an amino group at C-3 resulted in decreased activity towards either T. cruzi cells or TcFPPS. Density functional theory calculations justify this unexpected behavior. Although these compounds were devoid of activity against T. cruzi cells and TcFPPS, they were efficient growth inhibitors of tachyzoites of T. gondii. This activity was associated with a potent inhibition of the enzymatic activity of TgFPPS. Compound 28 arises as a main example of this family of compounds exhibiting an ED50 value of 4.7 μM against tachyzoites of T. gondii and an IC50 of 0.051 μM against TgFPPS.  相似文献   

4.
As a part of our project aimed at developing new safe chemotherapeutic agents against tropical diseases, a series of aryl derivatives of 2- and 3-aminoquinoline, some of them new compounds, was designed, synthesized, and evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible for American trypanosomiasis (Chagas’ disease), and Leishmania mexicana, the etiological agent of Leishmaniasis. Some of them showed a remarkable activity as parasite growth inhibitors. Fluorine-containing derivatives 11b and 11c were more than twice more potent than geneticin against intracellular promastigote form of Leishmania mexicana exhibiting both IC50 values of 41.9 μM. The IC50 values corresponding to fluorine and chlorine derivatives 11b–d were in the same order than benznidazole against epimastigote form. These drugs are interesting examples of effective antiparasitic agents with outstanding potential not only as lead drugs but also to be used for further in vivo studies. In addition, the obtained compounds showed no toxicity in Vero cells, which makes them good candidates to control tropical diseases. Regarding the probable mode of action, assayed quinoline derivatives interacted with hemin, inhibiting its degradation and generating oxidative stress that is not counteracted by the antioxidant defense system of the parasite.  相似文献   

5.
New 5-nitroindazole derivatives were developed and their antichagasic properties studied. Eight compounds (14–18, 20, 26 and 28) displayed remarkable in vitro activities against Trypanosoma cruzi (T. cruzi). Its unspecific cytotoxicity against macrophages was evaluated being not toxic at a concentration at least twice that of T. cruzi IC50, for some derivatives. The electrochemical studies, parasite respiration studies and ESR experiment showed that 5-nitroindazole derivatives not be able to yield a redox cycling with molecular oxygen such as occurs with nifurtimox (Nfx). The study on the mechanism of action proves to be related to the production of reduced species of the nitro moiety similar to that observed with benznidazole.  相似文献   

6.
Leishmaniasis is a widespread neglected tropical disease complex that is responsible of one million new cases per year. Current treatments are outdated and pose many problems that new drugs need to overcome. With the goal of developing new, safe, and affordable drugs, we have studied the in vitro activity of 12 different 5-nitroindazole derivatives that showed previous activity against different strains of Trypanosoma cruzi in a previous work. T. cruzi belongs to the same family as Leishmania spp., and treatments for the disease it produces also needs renewal. Among the derivatives tested, compounds 1, 2, 9, 10, 11, and 12 showed low J774.2 macrophage toxicity, while their effect against both intracellular and extracellular forms of the studied parasites was higher than the ones found for the reference drug Meglumine Antimoniate (Glucantime®). In addition, their Fe-SOD inhibitory effect, the infection rates, metabolite alteration, and mitochondrial membrane potential of the parasites treated with the selected drugs were studied in order to gain insights into the action mechanism, and the results of these tests were more promising than those found with glucantime, as the leishmanicidal effect of these new drug candidates was higher. The promising results are encouraging to test these derivatives in more complex studies, such as in vivo studies and other experiments that could find out the exact mechanism of action.  相似文献   

7.
Chagas’ disease is a parasitic infection caused by Trypanosoma cruzi that is still treated by old and toxic drugs. In the search for novel alternatives, natural sources are an important source for new drug prototypes against T. cruzi to further structural exploitation. A set of natural-based compounds (LINS03) was designed, showing promising antitrypanosoma activity and low cytotoxicity to host cells. In this paper, nine novel LINS03 derivatives were evaluated against T. cruzi trypomastigotes and amastigotes. The selectivity was assessed through cytotoxicity assays using NCTC mammalian cells and calculating the CC50/IC50 ratio. The results showed that compounds 2d and 4c are noteworthy, due their high activity against amastigotes (IC50 13.9 and 5.8 µM) and low cytotoxicity (CC50 107.7 µM and >200 µM, respectively). These compounds did not showed alteration on plasma membrane permeability in a Sytox green model. SAR analysis suggested an ideal balance between hydrosolubility and lipophilicity is necessary to improve the activity, and that insertion of a meta-substituent is detrimental to the activity of the amine derivatives but not to the neutral derivatives, suggesting different mechanisms of actions. The results presented herein are valuable for designing novel compounds with improved activity and selectivity to be applied in future studies.  相似文献   

8.
In this study we report the synthesis, characterization, biological evaluation, and druglikeness assessment of a series of 20 novel isoxazolyl-sulfonamides, obtained by a four-step synthetic route. The compounds had their activity against Trypanosoma cruzi, Leishmania amazonensis, Herpes Simplex Virus type 1 and cytotoxicity evaluated in phenotypic assays. All compounds have drug-like properties, showed low cytotoxicity and were promising regarding all other biological activities reported herein, especially the inhibitory activity against T. cruzi. The compounds 8 and 16 showed significant potency and selectivity against T. cruzi (GI50?=?14.3?µM, SI?>?34.8 and GI50?=?11.6?µM, SI?=?29.1, respectively). These values, close to the values of the reference drug benznidazole (GI50?=?10.2?µM), suggest that compounds 8 and 16 represent promising candidates for further pre-clinical development targeting Chagas disease.  相似文献   

9.
Novel isothiocyanate derivatives were synthesized starting from noscapine, bile acids, amino acids, and some aromatic compounds. Antiparasitic activities of the synthesized derivatives were tested against four unicellular protozoa, i.e., Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Interestingly, seven isothiocyanate analogues displayed promising antiparasitic activity against Leishmania donovani with IC50 values between 0.4 and 1.0 µM and selectivity index (SI) ranged from 7.8 to 18.4, comparable to the standard drug miltefosine (IC50 = 0.7 μM). Compound 7h demonstrated the best antileishmanial activity with an IC50 value of 0.4 µM. Seven products exhibited inhibition activity against T. brucei rhodesiense with IC50s below 2.0 μM and SI between 2.7 and 29.3. Four primary amine derivatives of noscapine and five isothiocyanate derivatives exhibited antiplasmodial activity with IC50s in the range of 1.1–2.7 µM and SI values between 1.1 and 14.5. The isothiocyanate derivative 7c showed against T. cruzi with an IC50 value of 1.9 µM and SI 4. Molecular docking and ADMET studies were performed to investigate the interaction between active ligands and T. brucei trypanothione reductase active site. The docking studies showed significant binding affinity of noscapine derivatives to enzyme active site and good compatibility with experimental data.  相似文献   

10.
New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 <1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate.  相似文献   

11.
Five novel 1H-pyrrolo[2,3-b]pyridine or 1H-pyrazolo[3,4-b]pyridine derivatives, with a methylene, sulfur, sulfoxide or cyclopropyl group as a linker, were designed, synthesized and biologically evaluated against c-Met and ALK. The development of these methods of compound synthesis may provide an important reference for the construction of novel 7-azaindole and 7-azaindazole derivatives with a single atom linker. The enzyme assay and cell assay in vitro showed that compound 9 displayed strong c-Met kinase inhibition with IC50 of 22.8 nM, moderate ALK kinase inhibition, and strong cell inhibition with MKN-45 IC50 of 329 nM and EBC-1 IC50 of 479 nM. In order to find the better candidate compounds, compounds 8, 9 and 10 have been selected as tool compounds for further optimization.  相似文献   

12.
Aromatic oligovalent glycosyl disulfides and some diglycosyl disulfides were tested against three different Trypanosoma cruzi strains. Di-(β-d-galactopyranosyl-dithiomethylene) benzenes 2b and 4b proved to be the most active derivatives against all three strains of cell culture-derived trypomastigotes with IC50 values ranging from 4 to 11 μM at 37 °C. The inhibitory activities were maintained, although somewhat lowered, at a temperature of 4 °C as well. Three further derivatives displayed similar activities against at least one of the three strains. Low cytotoxicities of the active compounds, tested on confluent HeLa, Vero and peritoneal macrophage cell cultures, resulted in significantly higher selectivity indices (SI) than that of the reference drug benznidazole. Remarkably, several molecules of the tested panel strongly inhibited the parasite release from T. cruzi infected HeLa cell cultures suggesting an effect against the intracellular development of T. cruzi amastigotes as well.  相似文献   

13.
Twelve novel benzimidazole derivatives were synthesized and their in vitro activities against epimastigotes of Trypanosoma cruzi were evaluated. Two derivatives (6 and 7), which have 4-hydroxy-3-methoxyphenyl moiety in their structures, proved to be the most active in inhibiting the parasite growth. Compound 6 showed a trypanocidal activity higher than benznidazole (IC50 = 5 µM and 7.5 µM, respectively) and less than nifurtimox (IC50 = 3.6 µM). In addition, the ability of 6 and 7 to modify the redox homeostasis in T cruzi epimastigote was studied; cysteine and glutathione increased in parasites exposed to both compounds, whereas trypanothione only increased with 7 treatment. These results suggest that the decrease in viability of T. cruzi may be attributed to the change in cellular redox balance caused by compound 6 or 7. Furthermore, compounds 6 and 7 showed CC50 values of 160.64 and 160.66 µM when tested in mouse macrophage cell line J774 and selectivity indexes (macrophage/parasite) of 32 and 20.1, respectively.  相似文献   

14.
A series of twenty phthalazinyl-hydrazones were synthesized and tested as potential anti-Trypanosoma cruzi agents. The phthalazines containing 5-nitroheteroaryl moiety 3l and 3m displayed an excellent in vitro antitrypanosomal profile, exhibiting low micromolar EC50 values against proliferative epimastigote of T. cruzi and minimal toxicity toward Vero cells. These derivatives were more potent than the reference drug benznidazole against the epimastigote stage of the parasite. Structure-property analysis indicates that the highly conjugated 5-nitroheteroaryl moiety connected to the phthalazin scaffold play an important role in the antichagasic activity of these phthalazines. The decrease on the mitochondrial dehydrogenase activity and significant ROS production found for the parasites treated with 3l and 3m suggest that both nitro-derivatives can act through an oxidative stress mechanism.  相似文献   

15.
Most of the endogenous free d-serine (about 90%) in the brain is produced by serine racemase (SR). d-Serine in the brain is involved in neurodegenerative disorders and epileptic states as an endogenous co-agonist of the NMDA-type glutamate receptor. Thus, SR inhibitors are expected to be novel therapeutic candidates for the treatment of these disorders. In this study, we solved the crystal structure of wild-type SR, and tried to identify a new inhibitor of SR by in silico screening using the structural information. As a result, we identified two hit compounds by their in vitro evaluations using wild-type SR.Based on the structure of the more potent hit compound 1, we synthesized 15 derivatives and evaluated their inhibitory activities against wild-type SR. Among them, the compound 9C showed relatively high inhibitory potency for wild-type SR. Compound 9C was a more potent inhibitor than compound 24, which was synthesized by our group based upon the structural information of the mutant-type SR.  相似文献   

16.
A series of novel 7-(N-substituted-methyl)-camptothecin derivatives was designed, synthesized, and evaluated for in vitro cytotoxicity against four human tumor cell lines, A-549, MDA-MB-231, KB, and KBvin. All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, with IC50 values ranging from 0.0023 to 1.11 μM, and were as or more potent than topotecan. Compounds 9d, 9e, and 9r exhibited the highest antiproliferative activity among all prepared derivatives. Furthermore, all of the compounds were more potent than paclitaxel against the multidrug-resistant (MDR) KBvin subline. With a concise efficient synthesis and potent cytotoxic profiles, especially significant activity towards KBvin, compounds 9d, 9e, and 9r merit further development as a new generation of camptothecin-derived anticancer clinical trial candidates.  相似文献   

17.
Forty six new 1,4-epoxy-2-exo-aryl- and cis-2-aryl-4-hydroxytetrahydro-1-benzazepine derivatives were synthesized and fully characterized. All compounds were tested in vitro against both Trypanosoma cruzi and Leishmania chagasi parasites and also for cytotoxicity using Vero and THP-1 mammalian cell lines. Many of the evaluated compounds showed remarkable activity against the epimastigote and intracellular amastigote forms of T. cruzi, with IC50 values comparable with that of control drug nifurtimox, a nitrofuran derivative currently used in the treatment of Chagas’ disease. Other derivatives were found to have good activity against L. chagasi promastigotes, with low toxicity against the mammalian cells, but neither of them was active on intracellular amastigotes of L. chagasi infecting THP-1 macrophages.  相似文献   

18.
This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer’s disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 μM and 5.22 μM respectively against AChE; and, 6.98 μM and 5.29 μM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for β-amyloid (Aβ) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.  相似文献   

19.
A new series of 3-substituted-4-hydroxycoumarin derivatives was designed, synthesized, and evaluated for CDK inhibiting and anticancer activities. All the synthesized target compounds showed remarkably high affinity and selectivity towards CDK1B, compared to flavopiridol, with Ki values in the low nanomolar range (Ki = 0.35–0.88 nM). Most of them elicited considerable inhibiting effect against CDK9T1 (Ki = 3.26–23.45 nM). Moreover, all the target compounds were tested in vitro against eighteen types of human tumor cell lines. The hydrazone 3a, N-phenylpyrazoline derivative 6b and 2-aminopyridyl-3-carbonitrile derivative 8c were the most potent anticancer agents against MCF-7 breast cancer cell line (IC50 = 0.21, 0.21 and 0.23 nM, respectively). The target compounds 3a, 6b and 8c were further evaluated in MCF-7 breast cancer mouse xenograft model and showed in vivo efficacy at 10 mg/kg dose. The docking study confirmed a unique binding mode in the active site of CDK1B with better score than flavopiridol. Quantitative structure activity relationship study was done and revealed a highly predictive power R2 of 0.81.  相似文献   

20.
In this study, we designed and synthesized a series of thiophen-2-iminothiazolidine derivatives from thiophen-2-thioureic with good anti-Trypanosoma cruzi activity. Several of the final compounds displayed remarkable trypanocidal activity. The ability of the new compounds to inhibit the activity of the enzyme cruzain, the major cysteine protease of T. cruzi, was also explored. The compounds 3b, 4b, 8b and 8c were the most active derivatives against amastigote form, with significant IC50 values between 9.7 and 6.03 μM. The 8c derivative showed the highest potency against cruzain (IC50 = 2.4 μM). Molecular docking study showed that this compound can interact with subsites S1 and S2 simultaneously, and the negative values for the theoretical energy binding (Eb = −7.39 kcal·mol−1) indicates interaction (via dipole–dipole) between the hybridized sulfur sp3 atom at the thiazolidine ring and Gly66. Finally, the results suggest that the thiophen-2-iminothiazolidines synthesized are important lead compounds for the continuing battle against Chagas disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号