首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study investigated whether heat-killed Lactobacillus protects host animal against influenza virus infection and stimulates their immunity. Heat-killed Lactobacillus gasseri TMC0356 was orally administered to BALB/c mice for 19 days; the mice were intranasally infected with Flu A/PR/8/34 (H1N1) on day 14, and clinical symptoms were monitored. After 6 days, the mice were sacrificed, and pulmonary virus titres were determined. Splenic activation of natural killer (NK) cells and the mRNA expression of cytokines and other immune molecules in the lung and Peyer's patch (PP) were analysed. Clinical symptom scores of mice orally fed TMC0356 ameliorated significantly (P < 0.01); their pulmonary virus titres decreased significantly compared with those of control mice (P < 0.05); their mRNA expression of interleukin (IL)-12, IL-15 and IL-21 in PP and the pulmonary mRNA expression of IFN-γ, TNF, IL-12a, IL-12rbl, IL-2rb and perforin 1 increased significantly (P < 0.05). Oral administration of heat-killed lactobacilli may protect against influenza virus infection by stimulating local and systemic immune responses. Cellular components of lactobacilli may be pivotal in protecting against viral infection by enhancing gut and respiratory immune responses.  相似文献   

2.
Aims: To investigate the influence of heat‐killed Lactobacillus gasseri TMC0356 on changes in respiratory immune function and intestinal microbiota in a diet‐induced obese mouse model. Methods and Results: Male C57BL/6J mice were fed a high‐fat diet for 16 weeks. After 8 weeks, the high‐fat‐diet‐induced obese mice (DIO mice) were randomly divided into two 0067roups, the DIO and DIO0356 groups. DIO0356 group mice were orally fed with heat‐killed TMC0356 every day for 8 weeks, while DIO group mice were exposed to 0·85% NaCl over the same time period as controls. After intervention, the pulmonary mRNA expression of cytokines and other immune molecules in DIO0356 mice compared to those in DIO group mice was significantly increased (P < 0·05, P < 0·01). In faecal bacterial profiles, analysed using the terminal restriction fragment length polymorphism (T‐RFLP) method, T‐RFLP patterns in 75% of the DIO0356 group mice were apparently changed compared with those in control group mice. Conclusion: These results suggest that inactive lactobacilli may stimulate the respiratory immune responses of obese host animals to enhance their natural defences against respiratory infection, partially associating with their potent impact on intestinal microbiota. Significance and Impact of the Study: We have demonstrated that oral administration of inactive lactobacilli may protect host animals from the lung immune dysfunction caused by obesity.  相似文献   

3.
We conducted a study to evaluate the possibility that intranasal administration of a new probiotic strain Lactobacillus gasseri TMC0356 (TMC0356) may protect host animals from influenza virus (IFV) infection, which was indicated by enhanced respiratory immune responses in a mouse model. After 3 days of exposure to TMC0356, BALB/c mice were intranasally infected with IFVA/PR/8/34 (H1N1). Lung cells were isolated from the tested mice and evaluated for cytotoxicity against YAC-1 cells. After intranasal treatment with TMC0356, mice showed a lower morbidity and higher survival rate compared to control mice (P < 0.05). The cytotoxicity of lung cells isolated from mice after intranasal treatment against YAC-1 cells was statistically higher than that of lung cells isolated from control mice (P < 0.05). Intranasal administration of TMC0356 significantly increased mRNA expression of interleukin (IL)-1β, tumor necrosis factor, IL-10, and monocyte chemotactic protein-1 (P < 0.01). These results suggest that intranasal administration of TMC0356 may protect the host animal from IFV infection. They also indicate that TMC0356 can enhance respiratory cell-mediated immune responses of host animals characteristically with up-regulated activation of lung natural killer cells. Further studies will evaluate the possible role of the immune stimulatory effects of TMC0356 within the protective effects of this bacterium against IFV, as observed in the present study.  相似文献   

4.
A randomized double-blind, placebo-controlled trial was conducted to ascertain the intestinal microbiota-altering properties of LGG and L. gasseri TMC0356 (TMC0356) in Japanese cedar Cryptomeria japonica pollinosis patients. Fecal bacteria communities were examined before and after fermented milk administration using culture, FISH and T-RFLP methods. Test group subjects showed the presence of LGG and TMC0356 along with a significant increase in fecal lactobacilli ( P < 0.001) after giving LGG and TMC0356 fermented milk. Culture and FISH analysis revealed no significant changes in other intestinal bacterial groups. Each subject exhibited a characteristic T-RFLP profile pattern that varied quantitatively and qualitatively with JCP shedding. Profile changes were observed in 53% of placebo group subjects and in 21% of test group subject's post-administration, indicating that LGG and TMC0356 suppressed intestinal microbiota changes in JCPsis patients. The results suggest that intestinal microbiota might be more sensitive to exposure to environmental allergens than expected from the results of general culture method studies. Stabilization of intestinal microbiota by selected probiotic strains such as LGG and TMC0356 could be beneficial to homeostasis of the intestinal microbiota and useful in the management of JCPsis.  相似文献   

5.
Aims: To investigate whether intranasal Lactobacillus administration protects host animals from influenza virus (IFV) infection by enhancing respiratory immune responses in a mouse model. Methods and Results: After 3 days of intranasal exposure to Lactobacillus rhamnosus GG (LGG), BALB/c mice were infected with IFV A/PR/8/34 (H1N1). Mice treated with LGG showed a lower frequency of accumulated symptoms and a higher survival rate than control mice (P < 0·05). The YAC‐1 cell‐killing activity of lung cells isolated from mice treated with LGG was significantly greater than those isolated from control mice (P < 0·01). Intranasal administration of LGG significantly increased mRNA expression of interleukin (IL)‐1β, tumour necrosis factor (TNF) and monocyte chemotactic protein (MCP)‐1 (P < 0·01). Conclusions: These results suggest that intranasal administration of LGG protects the host animal from IFV infection by enhancing respiratory cell‐mediated immune responses following up‐regulation of lung natural killer (NK) cell activation. Significance and Impact of Study: We have demonstrated that probiotics might protect host animals from viral infection by stimulating immune responses in the respiratory tract.  相似文献   

6.
Lactobacillus GG (LGG) and L. gasseri TMC0356 (TMC0356) were investigated for their ability to alleviate nasal blockage associated with allergic rhinitis using a guinea pig model. The increases in sRaw at 10 min and 5 hr after the exposure of the nasal mucosa to OVA were significantly alleviated in the guinea pigs orally administrated with LGG and TMC0356 compared with those of the control (P<0.05 and P<0.01). The total numbers of leukocytes, particularly eosinophils and neutrophils from the nasal cavity lavage fluid, and the OVA-specific IgE concentration in the serum were also decreased in the guinea pigs orally administrated with LGG and TMC0356, although the decreases were not statistically significant. These results suggest that LGG and TMC0356 can alleviate antigen-induced nasal blockage in earlyphase and late-phase inflammatory responses associated with allergic rhinitis.  相似文献   

7.
The present study was conducted to test the ability of probiotic lactobacilli to alter age-related immunosenescence in host animals. Senescence-accelerated mouse prone 1 mice were orally fed heat-killed Lactobacillus gasseri TMC0356 (TMC0356) for 4 and 8?weeks at dosages of 10?mg?day(-1) after a 16-week period of prefeeding with a standard diet. After 4 and 8?weeks of TMC0356 intervention, splenic activation of natural killer (NK) cells and mRNA expression of cytokines and other immune molecules in the lungs were analysed. After 4 and 8?weeks, splenic NK cell activities were significantly higher in the TMC0356-fed mice compared with control mice (P?相似文献   

8.
The murine macrophage‐like cell line J774.1 was treated with heat‐killed cells of Lactobacillus GG (LGG) and L. gasseri TMC0356 (TMC 0356). Interleukin (IL)‐6, IL‐12, and tumor necrosis factor‐α were profiled from the J774.1 cells using enzyme‐linked immunosorbent assay methods. The conditioned medium from cultured J774.1 cells was transferred to the preadipocyte cell line 3T3‐L1 (which is a mouse embryonic fibroblast‐adipose‐like cell line). Growth and differentiation of 3T3‐L1 cells were monitored by analyzing lipid accumulation and expression of peroxisome proliferator‐activated receptor (PPAR)‐γ mRNA. The medium conditioned by 3T3‐L1 cells was added to J774.1 cells and the cytokines in the supernatant analyzed. Compared with that of cells exposed to a PBS‐conditioned medium, lipid accumulation in 3T3‐L1 cells was significantly suppressed in a dose‐dependent manner by each medium that had been conditioned with LGG and TMC0356. PPAR‐γ mRNA expression in 3T3‐L1 cells was also significantly downregulated (P < 0.01, P < 0.05, respectively). The conditioned medium of 3T3‐L1 adipose phenotype significantly stimulated production of IL‐6 and IL‐12 in J774.1 cells treated with LGG and TMC0356. These results suggest that lactobacilli may suppress differentiation of preadipocytes through macrophage activation and alter the immune responses of macrophages to adipose cells.  相似文献   

9.
Aims: The aim of this study was to investigate the influence of heat treatment and culture media on the immunoregulatory effects of a probiotic strain, Lactobacillus gasseri TMC0356 (TMC0356). Methods and Results: TMC0356 cultured in deMan–Rogosa–Sharpe and same food grade (FG) media were inactivated with the heat treatment at 70 and 90°C. Viable and heat‐killed TMC0356 were tested for their ability to induce interleukin (IL)‐12 production in the murine macrophage cell line J774.1. These TMC0356 were examined for their resistance to N‐acetylmuramidase. Their morphology was observed by scanning electron microscopy. The heat‐killed TMC0356 significantly induced IL‐12 production in J774.1 cells and exhibited enhanced resistance to N‐acetylmuramidase compared with viable TMC0356. Morphological changes were observed in TMC0356 when cultured in FG medium. Cell morphology and induction of IL‐12 production in J774.1 cells were also associated. Conclusions: These results suggest that heat treatment and culture medium composition modified the immunoregulatory effects of TMC0356 to induce IL‐12 production in macrophages. Significance and Impact of the Study: These results demonstrate that probiotic immunoregulatory effects may be modified by the processing technology of cell preparation.  相似文献   

10.
Aims: The anti‐infectious activity of lactobacilli against multi‐drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic‐induced infection. Methods and Results: Explosive intestinal growth and subsequent lethal extra‐intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 108 colony‐forming units per mouse daily to mice. Comparison of the anti‐Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869T, Lactobacillus plantarum ATCC 14917T, Lactobacillus reuteri JCM 1112T, Lactobacillus rhamnosus ATCC 7469T and Lactobacillus salivarius ATCC 11741T conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334T and Lactobacillus zeae ATCC 15820T. The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti‐infectious activity. Moreover, heat‐killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti‐infectious activity. Conclusion: These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi‐drug resistant pathogens, such as DT104. Significance and Impact of the Study: Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics.  相似文献   

11.
Lactobacillus GG and L. gasseri TMC0356 were examined for their potential to alter the immune responses of murine PP cells in vitro and in vivo. Lactobacillus GG and L. gasseri TMC0356 characteristically stimulated the production of IL-12, IL-6, IFN-γ and IgA from isolated PP cells in vitro . Anatomical analysis indicated uptake of these bacteria by the PP tissue after giving orally in mice. Isolated PP cells exposed to Lactobacillus GG in vivo secreted more IFN-γ, IL-6 and total IgA, whereas those exposed to L. gasseri TMC0356 in vivo did not exhibit altered immune responses in terms of cytokine and IgA production. Therefore, these two bacteria might exhibit different immunodulatory effects in host animals by strain-dependent interaction with gut-associated lymphoid tissues in vivo .  相似文献   

12.
The nasal vascular permeability of ovablumin (OVA)-sensitized Brown Norway rats was evaluated by analyzing a brilliant blue concentration in perfusate from the nose after exposure of the nasal mucus to OVA. Oral administration of Lactobacillus GG and L. gasseri TMC0356 significantly inhibited the increase in nasal vascular permeability (P<0.01). The serum IgE of the tested rats also decreased, although the change was not statistically significant. These results indicate that Lactobacillus GG and L. gasseri TMC0356 might alleviate nasal allergic symptoms by suppressing the increase in nasal vascular permeability caused by local inflammation associated with allergic rhnititis.  相似文献   

13.
Aims: To evaluate the protective effects of oral administration of milk fermented with a Lactococcus strain against influenza virus (IFV) infection in a mouse model. Methods and Results: Milk fermented with exopolysaccharide‐producing Lactococcus lactis subsp. cremoris (L. cremoris) FC was orally administered to BALB/c mice for 12 days. Mice were intranasally infected with IFV A/New Caledonia/20/99 (H1N1) on day 8, and survival was determined for 14 days after IFV infection. Survival rate and body weight loss after IFV infection in the L. cremoris FC fermented milk‐administered group were significantly improved compared with those in the control group. In the unfermented milk‐administered group, survival rate was not improved, whereas body weight loss was slightly improved compared with that in the control group. The mean virus titre in the lung of the L. cremoris FC fermented milk‐administered group 3 days after infection was significantly decreased compared with that in the control group. Conclusions: These results suggest that oral administration of milk fermented with L. cremoris FC protects mice against IFV infection. Significance and Impact of the Study: These results demonstrate that oral administration of milk fermented with exopolysaccharide‐producing Lactococcus strains might protect host animals against IFV infection.  相似文献   

14.
Cheng  Ruyue  Xu  Tong  Zhang  Yujie  Wang  Feng  Zhao  Linsen  Jiang  Yugang  He  Fang 《Probiotics and antimicrobial proteins》2020,12(2):589-599

This study examined whether Lactobacillus rhamnosus GG (LGG) and Bifidobacterium bifidum TMC3115 (TMC3115) could morphologically or physiologically influence hippocampal neuronal development in vitro. Hippocampal neurons cultured in vitro were exposed to live or heat-inactivated LGG or TMC3115 for either 6 or 24 h. Neuronal morphological changes and drebrin (DRB) and synaptophysin (SYP) protein levels were monitored using immunofluorescence. And the levels of DRB, SYP, and brain-derived neurotrophic factor (BDNF), and cAMP-response element binding protein (CREB) mRNA were detected using RT-PCR. The BDNF, CREB, and phosphorylated-CREB (P-CREB) protein levels were detected by extraction-enzyme-linked immunosorbent assay (ELISA) or Western blot assays. Heat-inactivated LGG and TMC3115 could enhance neuron viability, DRB and SYP protein levels, and BDNF mRNA level were significantly altered after exposure to the tested bacteria with 6 h or 24 h. There were no significant differences in neuronal morphology or DRB, SYP, or CREB mRNA levels among the groups following bacterial exposure. However, following exposure of live TMC3115 for 24 h, the neuronal BDNF and P-CREB protein levels were both significantly up-regulated as detected by western blot assays. These results demonstrated that LGG and TMC3115 could affect neuronal viability, along with hippocampal synaptic and functional development, in a strain-dependent manner, which may also be closely associated with the physiological and culture conditions of each strain. Up-regulated P-CREB may be one of the underlying mechanisms by which the bacteria, especially neurons following exposure of live TMC3115 for 24 h, are able to regulate neuronal BDNF protein production.

  相似文献   

15.
Eleven strains of lactobacilli were tested for their ability to induce the murine macrophage-like cell line J774.1 to secrete cytokines. Some of the bacteria tested induce the production of interleukin(IL) 6, IL-12, and tumor necrosis factor a (TNF-alpha) by J774.1 cells. Seven strains also induced the production of IL-10. However, no IL-1beta was produced. Lactobacillus acidophilus TMC 0356 significantly induced the production of more IL-6, IL-10, IL-12, and TNF-alpha than the other bacteria tested (p < 0.0001; ANOVA). These results suggest that lactobacilli can activate macrophages to secrete both inflammatory and anti-inflammatory cytokines. Selected strains might be used to bring about pro or antiinflammatory immune reactions.  相似文献   

16.
Aims: Oral administration of probiotics has been known to improve inflammatory responses against infectious diseases. Here, we describe the inhibitory effect of oral intake of heat‐killed Lactobacillus pentosus strain b240 (b240) on pneumococcal pneumonia in a murine experimental model. Method and Results: The mice treated with oral b240 for 21 days before Streptococcus pneumoniae infection exhibited prolonged survival time and less body weight loss, compared with saline‐treated control mice. Mild pneumonia with significantly reduced secretion of inflammatory cytokines/chemokines according to related mitogen‐activated protein kinase signalling molecules (phosphorylated c‐Jun N‐terminal kinase) was found in b240‐treated mice, whereas severe pneumonia with hypercytokinemia was evident in control mice. Prominent reduction in the number of pneumococci and elevated expression of Toll‐like receptor 2 and 4 in the lung tissues was concomitantly noted in b240‐treated mice. Conclusions: These findings indicate that b240 has inhibitory effects on pneumococcal pneumonia induced by Strep. pneumoniae infection and improves inflammatory tissue responses, resulting in reduced damages to the respiratory tissues. Significance and Impact of the Study: These results demonstrate that oral administration of b240 might protect host animals from Strep. pneumoniae infection by augmentation of innate immune response.  相似文献   

17.
The present study aimed to develop an innovative, strain-specific means of identifying the probiotic Lactobacillus gasseri TMC0356 and to determine whether orally administered TMC0356 could be recovered from the human intestine. High molecular weight genomic DNA was isolated from TMC0356 and 14 reference strains of L. gasseri, including the type strain. The DNA samples were digested with the selected rare-cutting restriction endonucleases SmaI, SacII and ApaI and the resulting fragments separated by pulsed-field gel electrophoresis (PFGE) in a size range between 20 to 290 kb. TMC0356 could be distinguished from the other L. gasseri strains on the basis of the SmaI and SacII macrorestriction patterns. Furthermore, L. gasseri strains isolated from the feces of subjects who had ingested TMC0356 were identical to TMC0356 in the SmaI, SacII and ApaI macrorestriction fragments of digested DNA. These results suggest that PFGE of genomic DNA digested with SmaI, SacII, could be a practical means of identification of TMC0356. Furthermore, these results indicate that ingested TMC0356 can survive in, and colonize, the human intestine.  相似文献   

18.
The present study describes the in vivo modulatory potential of Lactobacillus rhamnosus GG (LGG), an effective probiotic, in Giardia intestinalis-infected BALB/c mice. Experimentally, it was observed that oral administration of lactobacilli prior or simultaneous with Giardia trophozoites to mice, efficiently (p < 0.05) reduced both the severity and duration of giardiasis. More specifically, probiotics fed, Giardia-infected mice, showed a significant increase in the levels of antioxidants [reduced glutathione (GSH) and superoxide dismutase (SOD)] and intestinal disaccharidases [sucrase and lactase] and decreased levels of oxidants in the small intestine, in comparison with Giardia-infected mice. Histopathological findings also revealed almost normal cellular morphology of the small intestine in probiotic-fed Giardia-infected mice compared with fused enterocytes, villous atrophy and increased infiltration of lymphocytes in Giardia-infected mice. The results of the present study has shed new light on the anti-oxidative properties of LGG in Giardia mediated tissue injury, thereby suggesting that the effects of probiotic LGG are biologically plausible and could be used as an alternative microbial interference therapy.  相似文献   

19.
Aims: To explore the effect of Lactobacillus on redox state of colon chyme. Methods and Results: Nine Lactobacillus strains were studied for the inhibition of lipid peroxide formation in Fe2+/ascorbate system and for their ability to chelate ‘free’ ferrous ion. The result shows both properties were strain specific and no relationship between them was found. Both properties of Lactobacillus paracasei Fn032, Lactobacillus rhamnosus GG (LGG) and Lactobacillus sp. Fn001 were successively decreasing. LGG and Fn032 significantly decreased hydroxyl radicals (P < 0·01) in colonic fermentation model, in which considerable hydroxyl radicals occurred spontaneously. Addition of ferrous ion induced the production of hydroxyl radicals, which could be significantly inhibited by LGG, Fn032 (P < 0·01) and Fn001 (P < 0·05). Ferrous ion significantly induced the growth of Enterococcus and Escherichia coli, which could be inhibited by all three Lactobacillus strains. Escherichia coli and Enterococcus show significantly positive correlation with hydroxyl radicals with R of 0·96 (P = 0·0002) and 0·91 (P = 0·0017), respectively. Conclusions: Antioxidative Lactobacillus could modulate redox state in colonic fermentation system, which is related to their free radical–scavenging ability or antibacterial effect. Significance and Impact of the Study: This study proves that Lactobacillus strain could influence the redox state of gut chyme. Evaluation of antioxidative ability might be a powerful method for screening probiotic Lactobacillus strains.  相似文献   

20.
The present study describes the in vivo ameliorating effect of Lactobacillus casei supplementation in renourished Giardia intestinalis infected BALB/c mice. It was observed that daily administration of probiotic 7 days prior to Giardia-infection to renourished mice, efficiently reduced the excretion of Giardia cysts and trophozoite counts, along with significant increased fecal lactobacilli counts compared with Giardia-infected mice. It was also observed that oral feeding of probiotic to renourished-Giardia-infected mice abrogated all the anthropometric and biochemical anomalies. Histologically, morphological and cellular alteration of microvillus membrane integrity revealed that probiotic administration further ameliorated the mucosal damage in renourished-probiotic-Giardia-infected mice compared to severe microvillus atrophy, oedematous, vacuolated epithelial cells and ileitis in renourished-Giardia and Giardia-infected mice. Thus, it is suggested that probiotic used as the functional food helps in restoration of anthropometric, biochemical alterations and atrophied gut by enhancing the goblet cells and reducing the giardiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号