首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anadenanthera colubrina (Vell.) Brenan (Leguminosae-Mimosoideae) is a widely-distributed tree in seasonally dry tropical forests of South America that was classified previously as lacking nectaries. However, some studies have stated that its flowers produce nectar, while others analyzed the composition of unifloral honey produced from A. colubrina flowers, raising the question about nectar production in the species. We studied the pollination and reproductive biology of A. colubrina var. cebil (Griseb.) Altschul in a natural population in the Caatinga, northeastern Brazil. Reproductive phenology, sexual system, floral biology, resource, and pollinators were investigated. We analyzed the breeding system through controlled pollinations for addressing its dependence on pollen vectors for reproduction. Anadenanthera colubrina flowered in the dry season, flower heads are heteromorphic, with staminate flowers at the base and perfect flowers at the apex of the inflorescence, characterizing andromonoecy. Anthesis is diurnal. We observed small drops of nectar at the apex of the petals of some flowers per inflorescence. Together with observations on flower visitor behavior and histochemical tests, we propose that A. colubrina produces floral nectar at the apex of the corolla, characterizing a substitutive nectary (sensu Vogel). This is the first record of substitutive nectary in the Mimosoideae and the first record of andromonoecy in the genus. Bees were the main pollinators (higher frequency), although other insects such as wasps, butterflies, and small beetles were also observed collecting nectar and/or pollen. The species is self-incompatible, thus depending on insect pollen vectors, mainly bees, for reproduction.  相似文献   

2.
Studies of the floral biology of the buriti palm, Mauritia flexuosa, have presented conflicting results with respect to the mechanism of pollination, indicating either cantharophily or anemophily. To resolve this question, the floral biology of M. flexuosa was studied in a coastal restinga environment in northeastern Brazil. The reproductive system was studied experimentally, and floral visitors were collected by bagging inflorescences. In this environment, M. flexuosa, a dioecious species, has several gender-specific floral features that function to attract pollinators, especially beetles. The male flowers produce large amounts of pollen as a reward, and male and female inflorescences produce similar odors that attract pollinators to female flowers, which offer only a nectar secretion as a reward. When feeding on the female flowers, the visitors frequently come into contact with the stigmata. To increase the chances of pollination, the female flowers persist longer than the male ones, and the viability of the pollen grain is very high. A curculionid beetle species of the genus Grasidius was found to be an effective pollinator. We suspect that wind also contributes to the pollination of M. flexuosa in the study area, but in a relatively minor way.  相似文献   

3.
The genus Zamia (Zamiaceae: Cycadales) exhibits its greatest diversity in Colombia and is highly threatened by habitat loss, extraction for ornamental plant trade, and mining, among other factors. One of the most important considerations for the effective conservation of Zamia is its highly specialized reproductive biology. Despite the importance of pollination for the populations’ viability, no studies have examined the pollination process of cycads in Colombia. Herein, we describe the pollination process of Zamia incognita A. Lindstr. & Idárraga, in a natural population. Exclusion experiments were performed by selectively excluding wind, beetles, both, or neither, which demonstrated that Pharaxonotha beetles are effective pollinators of Zamia incognita and that wind does not play any role as pollen vector. By following beetles marked with fluorescent dyes and directly observing beetle movements on and into female cones and micropyles, we confirmed that Pharaxonotha sp. is the effective pollinator of Z. incognita. The beetles traveled a maximum dispersal distance from a male to female cone of nearly 22 m and a minimum distance of 5 m. We found Pharaxonotha beetles in male cones, where they complete their life cycle. Cones produce heat in a circadian pattern associated with the elongation of the cones and pollen shedding. The increase in cones’ temperature appears to play an important role in beetle attraction. We suggest that pollination droplets on the micropyles would be a reward to pollinators. We also discuss the relationship of this Zamia species with other insects, which have important consequences for the conservation of web interactions.  相似文献   

4.
Flowering plants have modified their floral organs in remarkably diverse ways to optimize their interaction with pollinators. Although floral organs represent a major source of floral diversity, many plants also use extrafloral organs, such as bracts and bracteoles, in interacting with pollinators; however, the evolutionary dynamics of non-floral organs involved in pollination are poorly studied. The genus Macaranga is characterized by protective mutualisms with ants that potentially interfere with pollinators on flowers. Macaranga flowers lack perianths and, notably, bracteoles serve the dual function of rewarding pollinators and protecting them from guarding ants; in one group of species, bracteoles provide a nectar reward to generalist pollinators, while in another group, bracteole “chambers” protect thrips or hemipteran pollinators that use these structures as feeding and breeding sites. We examined the diversity and evolutionary dynamics of inflorescence morphology in Macaranga, focusing on bracteoles. We recognized three inflorescence types based on examination of herbarium materials: Discoid-gland, which possess disc-shaped glands on the bracteole surfaces (including all the generalist-pollinated species); Enclosing, in which bracteoles cover flowers (including all the thrips- and hemipteran-pollinated species); and Inconspicuous, in which bracteoles are small, narrow or absent. Ancestral state reconstruction indicated that inflorescence morphologies have changed multiple times in the genus. These findings suggest that morphological changes in non-floral characters (bracteoles) of Macaranga species have occurred as frequently as in the floral structures of many flowering plants. The multiple evolutions of the Enclosing bracteoles, which protect pollinators, might have been facilitated by pollination interference from mutualistic ants.  相似文献   

5.
When alien pollinator species enter a native community of pollinators in which resource partitioning has been established, the pollination network between plants and pollinators may be modified through the interactions between the pollinators over the use of floral resources. We observed the floral-use patterns of native (Bombus hypocrita and B. deuteronymus) and alien (B. terrestris) bumblebee species in a coastal grassland in northern Japan. We analyzed the factors determining resource partitioning patterns. B. hypocrita tended to visit flowers with shallow or wide open corollas, such as Rosa rugosa, whereas B. deuteronymus visited flowers with complex or deeper corollas, such as Lathyrus japonicus. Given the wider floral preference of B. terrestris, floral use by the alien bumblebees consistently overlapped with that of native bumblebees. The visitation of B. terrestris to R. rugosa flowers was positively correlated with that of B. hypocrita. These bumblebee species frequently used similar floral resources, in part because of the large overlap in the seasonality of their foraging activity. The visitation frequency of B. deuteronymus to L. japonicus flowers was independent of the visitation frequency of other bumblebee species. The major visitation periods of the bumblebees to L. japonicus flowers reciprocally differed between B. deuteronymus and B. terrestris, suggesting phenological resource partitioning between these species. Our study suggests that phenological niche partitioning is more common in specialized flowers (L. japonicus) than in generalized flowers (R. rugosa).  相似文献   

6.
Pollinators provide a key service to both natural and agricultural ecosystems. Little is reported on the pollination chemoecology of Stevia rebaudiana (Asteraceae), a hermaphroditic species producing self-incompatible florets in small corymbs. We investigated the chemistry of volatiles potentially involved in its pollination system. The VOCs emitted by the corymbs of 27 F1 open-pollinated genotypes were collected by solid-phase micro-extraction and analyzed by gas chromatography–mass spectrometry (GC–MS), as well as morphometric data of the genotypes were recorded. Finally, we quantified the abundance of pollinators for each genotype. S. rebaudiana flowers were mainly visited by bees (Apidae and Halictidae), followed by hoverflies (Diptera: Syrphidae). GC–MS indicated that S. rebaudiana was characterized by a complex scent profile with large variability among F1 plants. Discriminant analysis showed that limonene, δ-elemene and bicyclogermacrene were the compounds explaining most of the scent bouquet difference between high attractive (>40 pollinators/plant) from low attractive pollinator power (<40 pollinators/plant). Limonene was the most representative VOC among plants that are more attractive to pollinators, while high emissions of δ-elemene and bicyclogermacrene were linked to plants that are less attractive to pollinators. S. rebaudiana morphometric data highlighted that, besides floral VOCs, corymb abundance and size, as well as plant height, may route pollinator visits. Overall, this study adds knowledge on floral phenology and pollinator ecological traits of S. rebaudiana, allowing a deeper understanding of its chemical ecology and pollination.  相似文献   

7.
We carried out experiments that considered the feeding, phenology, and biocontrol potential of dogbane beetle, Chrysochus auratus, on spreading dogbane, Apocynum androsaemifolium, a native perennial weed in lowbush blueberry (Vaccinium angustifolium). In no-choice host-feeding experiments, adult beetles did not feed upon common milkweed (Asclepias syriaca), periwinkle (Vinca minor), wild raisin (Viburnum cassenoides), and lowbush blueberry, all plants related to spreading dogbane or found around lowbush blueberry fields. In a field experiment, significant decreases in spreading dogbane total and foliar weight occurred at a density of 16 beetles per ramet, but not at lower beetle densities. In our Nova Scotia (NS) field sites, beetles were present for 8–12 weeks, beginning in late June or early July (225–335 growing degree days, GDD). Beetle abundance peaked at 4–7 beetles/m2 and occurred at 357–577 GDD, which temporally coincides with the incidence of mature spreading dogbane plants in the field. The results suggest that although inundations of C. auratus could cause significant defoliation of spreading dogbane, natural populations of the beetle probably could not satisfactorily suppress development of this weed as a stand-alone control tactic. Conservation and augmentation of C. auratus populations should nonetheless be encouraged in integrated management programs for spreading dogbane.  相似文献   

8.
Entomophilous plants reward pollinators with provision of nutrient-rich foods such as pollen and nectar. These rewards contain compounds that are essential to insect development and can be used by pollinators as well as herbivorous insects. The pollen beetle (Brassicogethes aeneus, syn. Meligethes aeneus) whose larvae develop in oilseed rape flowers (Brassica napus) is known to feed on pollen. Previous studies already showed the importance of pollen on the development of this insect but it seems that other resource, such as nectar, could also be used. The purpose of this study was to assess the respective roles of pollen and nectar on pollen beetle development. We tested their role with behavioural and developmental experiments using flowers where the presence and absence of nectar and pollen varied. Larvae, irrespective of their instar, fed both on anthers and nectar. Nectar did not influence larval development or adult survival while pollen influenced development by increasing both larval and adult weight. However, pollen did not affect larval or adult survival nor development time. These results indicate that pollen beetle larvae are adapted to deal with various diets and can complete their development without pollen or nectar.  相似文献   

9.
Lilium ‘Siberia’ flowers produce a strong scent, with monoterpenes serving as the main volatile component. Using a homology-based PCR strategy, we cloned a monoterpene synthase gene (LiTPS) from Lilium ‘Siberia’ petals. The gene consisted of a 1761-bp open reading frame, and encoded a 587-amino acid protein. The deduced amino acid sequence contained a highly conserved DDxxD domain at the C-terminus and RRx8W motifs at the N-terminus, which are both characteristic features of terpene synthase genes. Additionally, LiTPS was 40–50% similar to already known monoterpene synthases from other plants. Phylogenetic analysis of LiTPS revealed that it belonged to the TPS-b terpene synthase subfamily. LiTPS was predicted to contain an organelle-targeting peptide and function as a monoterpene synthase in plastids. Analyses of the structure of LiTPS suggested that it is a Class III terpene synthase gene. Furthermore, LiTPS was highly expressed in petals, but almost undetectable in stamens, styles, and leaves. During floral development in Lilium ‘Siberia’ plants, LiTPS was expressed in mature flower buds, with the highest expression levels registered on day 4 after anthesis (i.e., with fully open flowers), followed by a gradual decrease in expression levels. To the best of our knowledge, this is the first report describing cloning a Lilium terpene synthase gene. We report a positive correlation between the LiTPS expression level and floral scent component emission rate. This study provides potentially useful information for future research into the possible roles of LiTPS in the monoterpene metabolic pathway.  相似文献   

10.
The monocot genus Aspidistra comprises rhizomatous perennials that are distributed in tropical to warm temperate regions of Asia. Little is known about the pollinators of almost all the species, probably due to the inconspicuous nature of Aspidistra flowers. Nevertheless, the unusual floral morphology suggests biotic pollination, since pollen grains are hidden under each flower’s stigma. Aspidistra elatior has been suspected to have a very peculiar pollination ecology. So far, pollination by mollusks, crustaceans, or collembolans has been suspected. However, a recent study showed that A. elatior is mainly pollinated by species of fungus gnats in Kuroshima Island, southern Japan, which is its natural habitat. Here, we investigated the pollination ecology of A. elatior in Shiga Prefecture, central Japan, which is the introduced population, to reveal whether fungus gnats are also the main pollinator in the introduced population. Our study confirmed fungus gnats pollination in the investigated pollination. Furthermore, the main pollinators (i.e., Cordyla sixi and Bradysia sp.) are the same in both Kuroshima and Shiga Prefecture. Therefore, A. elatior mainly depends on a narrow taxonomic group of fungus gnats for pollination. In contrast, we failed to document any terrestrial amphipods visiting the A. elatior flowers, in spite of a relatively high fruit set in natural conditions. This fact will refute the amphipod pollination hypothesis proposed by previous studies. We consider that A. elatior is pollinated by fungus gnats through fungal mimicry, due to its superficial similarity to mushroom fruiting bodies and strong, musky floral scent.  相似文献   

11.
Floral scent is a key mediator in many plant–pollinator interactions. It is known to vary not only among plant species, but also within species among populations. However, there is a big gap in our knowledge of whether such variability is the result of divergent selective pressures exerted by a variable pollinator climate or alternative scenarios (e.g., genetic drift). Cypripedium calceolus is a Eurasian deceptive lady’s-slipper orchid pollinated by bees. It is found from near sea level to altitudes of 2500 m. We asked whether pollinator climate and floral scents vary in a concerted manner among different altitudes. Floral scents of four populations in the Limestone Alps were collected by dynamic headspace and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). Flower visitors and pollinators (the subset of visitors with pollen loads) were collected and identified. Preliminary coupled gas chromatographic and electroantennographic measurements with floral scents and pollinators revealed biologically active components. More than 70 compounds were detected in the scent samples, mainly aliphatics, terpenoids, and aromatics. Although several compounds were found in all samples, and all samples were dominated by linalool and octyl acetate, scents differed among populations. Similarly, there were strong differences in flower visitor spectra among populations with most abundant flower visitors being bees and syrphid flies at low and high altitudes, respectively. Pollinator climate differed also among populations; however, independent of altitude, most pollinators were bees of Lasioglossum, Andrena, and Nomada. Only few syrphids acted as pollinators and this is the first record of flies as pollinators in C. calceolus. The electrophysiological tests showed that bees and syrphid flies sensed many of the compounds released by the flowers, among them linalool and octyl acetate. Overall, we found that both floral scent and visitor/pollinator climate differ among populations. We discuss whether interpopulation variation in scent is a result of pollinator-mediated selection.  相似文献   

12.
Flowers of sexually deceptive taxa generally possess a set of morphological and physiological characters that mimic their insect pollinators. These characters often include a specific insect-like floral configuration, together with scent glands (osmophores) that produce fragrances which chemically resemble insect sex pheromones. Furthermore, these flowers tend not to produce pollinator food rewards. According to some authors, flowers of the Australian bladderwort Utricularia dunlopii (and species of the Utricularia capilliflora complex) resemble insects, and pollination perhaps occurs by pseudocopulation. The aims of this paper are to compare the structure and distribution of floral glandular trichomes in the Australian carnivorous plant U. dunlopii with those of closely related species assigned to the same section and to discuss their putative function. Floral tissues of U. dunlopii P. Taylor, Utricularia paulinae Lowrie, Utricularia dichotoma Labill. and Utricularia uniflora R.Br. (section Pleiochasia) were investigated using light microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry. In U. dunlopii, two long, erect, filiform appendages arising from the upper lip of the corolla, together with three arising from the lower lip, bear numerous glandular trichomes that may function as osmophores. In other species, such as U. uniflora and U. paulinae, glandular papillae on the corolla palate may also function as osmophores. The floral anatomical and morphological organisation of U. dunlopii differs from that of the other investigated species, indicating that its insect pollinators are also likely to differ. Morphological and ultrastructural observations, while generally contributing to our understanding of the flower of U. dunlopii, do not refute the possibility that pollination here may occur by pseudocopulation. Further field-based investigations, however, are now necessary to test this hypothesis.  相似文献   

13.
The beetle family Coccinellidae is rarely recorded from fossils. Most of the records come from the nineteenth and beginning of the twentieth century. A complete list of Coccinellidae records from Baltic amber is presented and discussed. Extensive literature research provided a surprising conclusion that not a single species of Coccinellidae has been formally described from Baltic amber till now. The first two species of ladybird beetles from Eocene Baltic amber are described and placed in the genus Serangium, namely S. twardowskii sp. nov. and S. gedanicum sp. nov. Their phylogenetic placement in the subfamily Microweiseinae is provided. A key to the fossil species of Serangium is given. Extant representatives of the genus are distributed mainly in tropical areas of Asia and Oceania, and are specialised predators of whiteflies. Current discovery shows that during the Middle Eocene, the genus Serangium was distributed wider in the Northern Hemisphere and the evolution of these ladybird beetles was probably influenced by the evolution of whiteflies which are also found in the Baltic amber.  相似文献   

14.
Males of solitary bees usually spend the night out of the nests. In the middle or late afternoon, they stop the patrolling behavior and move on to their sleeping places. Usually, they hang with the mandibles on small branches of the vegetation or stay inside flowers until the next day. We report the sleeping places of males of four Tapinotaspidini species on flowers of six plant species of four families. Flowers of three Iridaceae species were the most sought by males, especially flowers of Sisyrinchium scariosum which show high synchrony between anthesis and activity period of Lanthanomelissa discrepans males. Moreover, S. scariosum flowers are the most visited by females of L. discrepans which are the main pollinators; however, the role of the males as pollinators is unclear. Similar situation is evident for the interaction between males of Arhysoceble picta and Cuphea glutinosa (Lythraceae), where the males take nectar and may act as pollinators, like their females. We believe the plants are indirectly benefited by these interactions through the maintenance of the male populations of the pollinator bee species.  相似文献   

15.
An Eustoma grandiflorum APETALA1 (EgAP1) gene showing high homology to the SQUA subfamily of MADS-box genes was isolated and characterized. EgAP1, containing a conserved euAP1 motif at the C-terminus, showed high sequence identity to Antirrhinum majus SQUAMOSA in the SQUA subfamily. EgAP1 mRNA was detected in the leaf and expressed significantly higher in young flower buds than in mature flower buds. In flowers, EgAP1 mRNA was strongly detected in sepal, weakly detected in petal and was absent in stamen and carpel. Transgenic Arabidopsis plants ectopically expressing EgAP1 flowered early and produced terminal flowers. In addition, the conversion of petals into stamen-like structures was also observed in 35S::EgAP1 flowers. 35S::EgAP1 was able to complement the ap1 flower defects by restoring the defect for sepal formation and significantly increasing second whorl petal production in Arabidopsis ap1 mutant plants. These results revealed that EgAP1 is the APETALA1 homolog in E. grandiflorum and that the function of EgAP1 is involved in floral induction and flower formation.  相似文献   

16.
Exclusivity of pollinators, temporal partitioning of shared pollinators and divergence in pollen placement on the shared pollinators’ bodies are mechanisms that prevent interspecific pollen flow and minimize competitive interactions in synchronopatric plant species. We investigated the floral biology, flower visitors, pollinator effectiveness and seasonal flower availability of two syntopic legume species of the genus Vigna, V. longifolia and V. luteola, in ‘restinga’ vegetation of an island in southern Brazil. Our goal was to identify the strategies that might mitigate negative consequences of their synchronous flowering. Vigna longifolia and V. luteola were self-compatible, but depended on pollinators to set seeds. Only medium to large bees were able to trigger the ‘brush type’ pollination mechanism. Vigna longifolia, with its asymmetrical corolla and hugging mechanism, showed a more restrictive pollination system, with precise sites of pollen deposition/removal on the bee’s body, compared to V. luteola, with its zygomorphic corolla and cymbiform keel. There was a daily temporal substitution in flower visitation by the main pollinators. Vigna longifolia and V. luteola had overlapping flowering phenology but the densities of their flowers fluctuated, resulting in a seasonal partitioning of flower visitation. The differences in corolla symmetry and mainly the temporal partitioning among pollinators throughout the day and the flowering season proved to be important factors in maintaining the synchronopatry of V. longifolia and V. luteola.  相似文献   

17.
Ground beetles were captured in a mixed southern taiga forest near the city of Vologda, Russia, from March to September 2014 using different collection techniques. Of the 250 specimens of ground beetles belonging to 22 species, 109 beetles representing 11 species yielded 326 specimens of mites of the cohorts Gamasina (4 species), Astigmatina (5), and Heterostigmatina (1). Two mite species, Antennoseius pseudospinosus Eidelberg, 1990, a common species in the steppes of southeastern Europe, and Halodarcia incideta Karg, 1969, a polyzonal European hydrophile, are recorded in the taiga zone for the first time. Dorsipes dorsipes Regenfuss, 1968, a specialized parasite of beetles of the genus Carabus Linnaeus, 1758, is new to the fauna of Eastern Europe. An adult mite of the genus Stylochirus G. Canestrini et R. Canestrini, 1882 was found for the first time in a natural hibernating chamber in close contact with an overwintering ground beetle, in particular, a male of S. fimetarius (Müller, 1859) on Carabus granulatus Linnaeus, 1785. The most common mite to occur on ground beetles was Antennoseius bullitus Karg, 1969, which was found on 7 carabid species with the mean occurrence of 41% and comprised 68% of the total mite sample. Joint phoresy of 2–3 mite species was recorded on 12 specimens of ground beetles; in 5 cases the co-occurring mites were Antennoseius bullitus and Stylochirus fimetarius. Three dominant mite species (85% of the total mite sample) were mainly collected off three dominant carabid species (70% of the beetle sample), but individual mite species preferred different hosts.  相似文献   

18.
19.
The tamarisk leaf beetle (Diorhabda carinulata), introduced from Eurasia in 2001 as a biological control agent for the invasive plant Tamarix ramosissima, has spread widely throughout the western USA. With D. carinulata now very abundant, scientists and restoration managers have questioned what influence this introduced arthropod might have upon the avian component of riparian ecosystems. From 2009 through 2012 we studied the consequences of biological invasions of the introduced tamarisk shrub and tamarisk leaf beetles on the diets of native birds along the Dolores River in southwestern Colorado, USA. We examined avian foraging behavior, sampled the arthropod community, documented bird diets and the use of invasive tamarisk shrubs and tamarisk leaf beetles by birds. We documented D. carinulata abundance, on what plants the beetles occurred, and to what degree they were consumed by birds as compared to other arthropods. We hypothesized that if D. carinulata is an important new avian food source, birds should consume beetles at least in proportion to their abundance. We also hypothesized that birds should forage more in tamarisk in the late summer when tamarisk leaf beetle larvae are more abundant than in early summer, and that birds should select beetle-damaged tamarisk shrubs. We found that D. carinulata composed 24.0 percent (±?19.9–27.4%) and 35.4% biomass of all collected arthropods. From the gut contents of 188 birds (25 passerine species), only four species (n?=?11 birds) contained tamarisk leaf beetle parts. Although D. carinulata comprised one-quarter of total insect abundance, frequency of occurrence in bird gut contents was only 2.1% by abundance and 3.4% biomass. Birds used tamarisk shrubs for foraging in proportion to their availability, but foraging frequency did not increase during the late summer when more tamarisk leaf beetles were present and birds avoided beetle-damaged tamarisk shrubs. Despite D. carinulata being the most abundant arthropod in the environment, these invasive beetles were not frequently consumed by birds and seem not to provide a significant contribution to avian diets.  相似文献   

20.
The rewarding orchid Epipactis flava was studied in NW Thailand. Its flowers were visited by a wide range of insects, most of which served as pollinators. The most frequent pollen bearers were (in decreasing order): the cricket Homoeoxipha lycoides, stingless bees of the Tetragonula testaceitarsis/hirashimai complex, hoverflies of subfam. Syrphinae, the wasp Polybioides gracilis and sweat bees of subfam. Halictinae. We found no evidence of a link between the rheophytic habit of E. flava and its pollinator fauna. Whereas most pollinators visited the flowers to feed on nectar, females of Episyrphus alternans (Syrphidae: Syrphinae) were observed to oviposit despite the absence of prey for their young. Hence, we suggest that dual pollination systems contribute to the opportunist strategy of E. flava, and we discuss, in a phylogenetic framework, how the strategy fits in with those previously reported for Epipactis sect. Arthrochilium. The elastic attachment of the epichile (a universal trait in sect. Arthrochilium) was found to promote outcrossing, and we hypothesize that loss of the elastic hinge has provided a key innovation facilitating recurrent evolution of obligate autogamy in sect. Epipactis (which is nested in sect. Arthrochilium).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号