首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Popov, L.E., Bassett, M.G. & Holmer, L.E. 2012: Earliest ontogeny of Early Palaeozoic Craniiformea: compelling evidence for lecithotrophy. Lethaia, Vol. 45, pp. 566–573. The early ontogeny of Palaeozoic Craniiformea (Brachiopoda) remains controversial, with conflicting reports of evidence indicating lecithotrophic versus planktotrophic larval stages. Further compelling evidence for lecithotrophy in Palaeozoic craniiforms is described here. Newly obtained, well‐preserved Silurian specimens of craniiforms, including Craniops (Craniopsida), and Lepidocrania? and Orthisocrania (Craniida) from Gotland and the St. Petersburg region, form the basis for this study. The new material demonstrates that the characters of shell structure and shell formation provide evidence of early differentiation of an adult dorsal mantle, and the presence of a distinctive primary layer with a characteristic lath‐like pattern indicates that these craniiforms underwent a lecithotrophic larval stage, more or less identical to that of living. □Novocrania. Brachiopoda, Craniiformea, ontogeny, phylogeny, Early Palaeozoic.  相似文献   

2.
3.
Possible life cycle of some ancient plectambonitoids (order Strophomenida) from the Middle Ordovician of Russia is reconstructed based on the well-preserved specimens composing the ontogenetic series. Four regions may be distinguished on their shell surface: protegulum, brephic shell, neanic shell and adult shell. The posterior margin of ventral protegulum bears pedicle sheath, which is a tubular outgrowth with a 40-μm-wide aperture at the distal end. The protegulum and brephic shell have common type of microstructure that possibly is spherular; the neanic and adult shells are fibrous. The strophomenide ontogeny possibly was similar to that of recent discinides. The strophomenide life cycle possibly included the planktotrophic juvenile stage; the protegulum and brephic shell were formed in the water column. The aperture of the pedicle sheath was possibly used as an anal opening of the floating juvenile and as an attachment organ during the settlement; at early adult stages, the sheath erased, the anus closed, and the animal started to lie on the ventral valve. The origin of the order Strophomenida and its relative groups is possibly connected with the loss of the pedicle lobe; judging by some strophomenide morphological features, true pedicle was present in the strophomenide ancestors. The tubes on the ventral umbones of strophomenides and billingsellides are not homologous as pedicle sheaths of strophomenides are formed at the planktotrophic swimming stage, and the tubes surrounding the pedicles of billingsellides were formed by deltidial plates of almost adult shell after settling.  相似文献   

4.
5.
The earliest growth of post‐metamorphic (post‐larval) shells in two species of Eohadrotreta is described from the Cambrian Shuijingtuo Formation of South China. Two different growth patterns can be observed by quantifying developmental variations in size and shape of successive stages of post‐metamorphic shell growth (including the pedicle foramen forming stage, pedicle foramen enclosing stage and intertrough increasing stage) of Eohadrotreta zhenbaensis and Eohadrotreta ? zhujiahensis . The pedicle foramen is never enclosed within the metamorphic shell of E. zhenbaensis , while the enclosed pedicle foramen of E .? zhujiahensis is located directly outside the metamorphic shell after the pedicle foramen enclosing stage. A strongly allometric growth pattern of E. zhenbaensis is demonstrated by the early enclosure of the pedicle foramen; an accelerated lengthening of the ventral intertrough is associated with the development of a more complex dorsal median septum during the intertrough increasing stage. By contrast, E .? zhujiahensis demonstrates possible paedomorphic development by delayed enclosure of pedicle foramen and an associated decreased lengthening of ventral intertrough during the intertrough increasing stage. This ontogenetic developmental sequence represents the marginal accretionary formation and growth of the pedicle foramen, which resembles that of linguloid brachiopods. Furthermore, the developmental process of the pedicle foramen of Eohadrotreta seems to recapitulate the likely evolutionary transition from the Botsfordiidae, with open delthyrium, to the Acrotheloidea, with an enclosed foramen. This study provides a unique opportunity to obtain a complete understanding of the ontogenetic development of the earliest acrotretoids, and casts new light on the phylogeny of lingulate brachiopods.  相似文献   

6.
The inner surface of the dorsal valve at the early developmental stages and the larval shells lacking adult shell are described for the first time for the Ordovician craniids. The presence of a larval calcareous shell in the Early Paleozoic craniids is proposed.  相似文献   

7.
Abstract: A collection of very early brephic juveniles from the Upper Aalenian of the Cotswolds, England, has provided the first opportunity to study the ontogeny of thecideoids prior to the recognizable development of a median septum. Traced towards their origin, the enduring characters of thecideides appear to be cementation, a delthyrium closed by a pseudodeltidium, an almost circular dorsal valve with a prominent erect bilobed cardinal process, well‐defined inner socket ridges, widely spaced lateral adductor muscle fields, tubercles, fibrous secondary shell lining both valves and probably endopunctae. The subperipheral rim and median septum so characteristic of adult thecideoids are undeveloped in the earliest juveniles. Initiation of the development of the free ventral wall in the ventral valve is identified as an important event in thecideoid ontogeny. Further important discoveries arising from the study are that the crura‐like outgrowths which form the brachial bridge in thecideides are not structurally homologous with the crura of spiriferides or terebratulides and that during their earliest ontogenetic development thecidellinids and thecideids are indistinguishable. Also, the identification of morphological characters correlative with both palaeontological and neontological approaches to thecideoid phylogeny has important implications for thecideide taxonomy. Interpretation of the morphology exhibited by the Cotswold specimens introduces the probability that during their earliest ontogeny moorellinin, thecidein and lacazellin dorsal valves follow the same development pattern and the described ontogenetic sequence has been corroborated by evidence from Jurassic rocks of Argentina, North America and France, from Cretaceous rocks of England, Central Europe and Czechoslovakia, also from extant species from the Atlantic, Indian and Pacific oceans, and to an extent which suggests the pattern of ontogenetic development revealed has been typical of thecideoids throughout their history.  相似文献   

8.
Recent and fossil (mid‐Cenozoic) specimens of the brachiopod Valdiviathyris quenstedti Helmcke, 1940 are described from New Zealand. The unusual median processes of this genus are shown to be the attachment sites of the brachial protractor muscles. Valdiviathyris is compared with Ancistrocrania, Neoancistrocrania and Novocrania and is considered to be a valid separate genus in the family Craniidae.  相似文献   

9.
Abstract. A new species of Clavagellidae, Bryopa aligamenta, from Okinawa, Japan, is described. The species is endolithic in living corals, with the left valve cemented to the crypt wall, as in all clavagellids. The free right valve exhibits an unusual growth pattern, with commarginal lines seemingly arising from the posterior valve margin and extending towards the anterior. This results from: (i) progressive anterior erosion of the umbones, probably as a consequence of the boring process; (ii) the apparent migration posteriorly, as the umbones are eroded, of the dorso‐ventral growth axis of the shell; and (iii) enhanced posterior inter‐commarginal growth. Unlike other clavagellid genera and species, however, there is no discernible primary ligament, at least in the adult. It is possible, however, that if a juvenile ligament were present (as in B. lata), it too would be lost as a consequence of antero‐dorsal erosion during boring. To retain valve alignment in the absence of a primary ligament, and possibly upon reaching an adult size, the mantle lays down alternating layers of calcium carbonate and proteinaceous periostracum onto the interior surface of the shell to thicken it, most noticeably marginally and, especially, posteriorly. The two valves are united dorsally, therefore, by thin layers of periostracum that probably exert a minimal opening force. B. aligamenta is, however, further characterised by large adductor, pallial, and siphonal retractor muscles so that the entire animal is encased tightly within an internally strengthened shell within a crypt. Movement must be minimal, blood being pumped into pallial haemocoels to push open the valves and extend the siphons. Despite a suggestion to the contrary, Bryopa is retained in the Clavagellidae, its unusual growth processes resulting from an endolithic life style within living corals. The fossil clavagellid Stirpulina bacillus, from the Pliocene/Pleistocene of Palermo, Sicily, Italy, was, unlike Bryopa aligamenta and other clavagellids, endobenthic, with a long adventitious tube and anterior watering pot superficially similar to species of Penicillidae, another family of the Clavagelloidea. Furthermore, as in all clavagellids only the left valve is fused into the fabric of the tube, the right being free within it. In all penicillids, both valves are fused into the fabric of their tubes. The watering pots of the fossil S. coronata, S. vicentina, and S. bacillus, moreover, are formed in a different manner to that of penicillids, by progressive encasement of the right valve inside the tube. In penicillids, the tube is secreted in a single event from the general mantle surface and the incorporation of both valves into its fabric. The constituent genera of the Clavagellidae thus constitute an example of parallel evolution with members of the Penicillidae.  相似文献   

10.
The application of sieving techniques to bulk samples from the Ashizawa Formation, Futaba Group (Lower Coniacian) of northeastern Honshu, Japan, has yielded well-preserved mesofossil assemblages comparable with those recently described from eastern North America, Europe, and central Asia. Among the most abundant and distinctive components of these assemblages are fusiform fruits that are assigned here to a new genus and species, Hironoia fusiformis gen. et sp. nov. The fruits developed from an epigynous ovary with three to four locules. Each locule bears one seed and has a distinctive dorsal germination valve. These features of the fruit, along with the adnate calyx, indicate an affinity to extant Cornales and specifically the Cornaceae sensu lato. The recognition of an unequivocal cornalean fruit in the Early Coniacian–Early Santonian of Japan provides the earliest record of this group in the fossil record. It also establishes a minimum age for the early divergence of the asterid clade, a major group of living angiosperms comprising more than a third of all species of extant flowering plants. Electronic Publication  相似文献   

11.
Abstract: Many articulated brachiopods experience marked life habit variations during ontogeny because they experience their fluid environment at successively higher Reynolds numbers, and they can change the configuration of their inhalant and exhalant flows as body size increases. We show that the extant brachiopod Terebratalia transversa undergoes a substantial ontogenetic change in reorientation governed by rotation around the pedicle. T. transversa′s reorientation angle (maximum ability to rotate on the pedicle) decreases during ontogeny, from 180 degrees in juveniles to 10–20 degrees in individuals exceeding 5 mm, to complete cessation of rotation in individuals larger than 10 mm. Rotation ability is substantially reduced after T. transversa achieves the adult lophophore configuration and preferred orientation with respect to ambient water currents at a length of 2.5–5 mm. We hypothesize that the rotation angle of T. transversa is determined mainly by the position of ventral and dorsal points of attachment of dorsal pedicle muscles relative to the pedicle. T. transversa shows a close correlation between the ontogenetic change in reorientation angle and ontogeny of morphological traits that are related to points of attachment of dorsal pedicle muscles, although other morphological features can also limit rotation in the adult stage. The major morphological change in cardinalia shape and the observed reduction of rotation affect individuals 2.5–10 mm in length. The position of ventral insertions of dorsal pedicle muscles remains constant, but contraction of dorsal pedicle muscles is functionally handicapped because dorsal insertions shift away from the valve midline, rise above the dorsal valve floor, and become limited by a wide cardinal process early in ontogeny (<5 mm). The rate of increase of cardinal process width and of distance between dorsal pedicle muscle scars substantially decreases in the subadult stage (5–10 mm), and most of the cardinalia shell traits grow nearly isometrically in the adult stage (>10 mm). T. transversa attains smaller shell length in crevices than on exposed substrates. The proportion of small‐sized individuals and population density is lower on exposed substrates than in crevices, indicating higher juvenile mortality on substrates prone to grazing and physical disturbance. The loss of reorientation ability can be a consequence of morphological changes that strengthen substrate attachment and maximize protection against biotic or physical disturbance (1) by minimizing torques around the pedicle axis and/or (2) by shifting energy investments into attachment strength at the expense of the cost involved in reorientation.  相似文献   

12.
We present maximum likelihood and Bayesian inference relative time‐tree analyses of aligned gene sequences from a worldwide collection of craniiform brachiopods belonging to two genera, Novocrania and Neoancistrocrania. Sequences were obtained from one mitochondrial and three nuclear‐encoded ribosomal RNA genes from varying numbers of specimens. Data‐exploration by network (splits) analyses indicates that each gene identifies the same divergent clades and (with one minor exception) the same inter‐clade relationships. Neoancistrocrania specimens were found only in the Pacific Ocean, near Japan, on the Norfolk and Chesterfield Ridges, and near the Solomon Islands. The Novocrania clades, in approximate order of increasing distance from the root comprise 1. a ‘Northern’ clade of animals collected in the NE. Atlantic, W. Mediterranean and Adriatic; 2. a ‘Tethyan’ clade comprising animals from the E. Mediterranean, Cape Verde islands and the Caribbean (Belize and Jamaica); 3. a ‘NE. Pacific’ clade containing animals from Vancouver Island and from localities near Japan and south of Taiwan; 4. a ‘Southern’ clade that contains two widely separated subclades, one from New Zealand and the other with an extraordinarily wide distribution, ranging from near Japan in the north to the Chesterfield Ridge and Solomon Islands in the West, and in the East to the Galapagos Islands, the coast of South America (Chile) and Richardson seamount (off South Africa) in the South Atlantic. To the South, members of this clade were found in the Weddell, Scotia and Bellinghausen Antarctic Seas. The root of the extant craniid radiation was previously found (by relaxed‐clock analysis) to lie on the branch connecting the two genera so that, in effect, the one clade of Neoancistrocrania serves to polarise evolutionary relationships within the several clades of Novocrania. As previously suggested, all results confirm that Neoancistrocrania is sister to the ‘Northern’ Novocrania clade, and this leads to a proposal that Neoancistrocrania represents one extreme of a wide range of variation in ancestral ventral valve mineralisation, speciation (~90 Ma) resulting from competitive exclusion in rapidly‐growing reef environments. To the extent possible, the identified molecular clades are correlated with named species of Novocrania. The reproductive and population biology of craniid brachiopods is not well known, but from available evidence they are considered to have low‐dispersal potential and, except in enclosed localities such as cold‐water fjords, to have small effective population sizes, features which are consistent with the observed divergent populations in well‐separated localities. Exceptionally slow craniid molecular (rDNA) evolution is suggested by the short branch of Novocrania where it has been used as an outgroup for large‐scale analyses of metazoans. Slow molecular evolution is also indicated by the existence of a distinct Tethyan clade, reflecting restricted dispersal at former times, and by the uniform, short, genetic distances and exceptionally wide geographical distribution of the Southern clade. Thus, the geographical distribution and phylogenetic divergence of craniid brachiopods is an example of phylotectonics, in which relationships revealed by phylogenetic analyses reflect opportunities for dispersal and settlement that were created by tectonic plate movements associated, in this case, with opening and closure of Tethys and the breakup of Gondwana. Molecular dating of craniid divergences and radiochemical dating of tectonic events thus illuminate one another. © 2014 The Linnean Society of London  相似文献   

13.
New data on the earliest ontogeny of Mid-Ordovician Baltoscandian clitambonitoid ( Apomatella , Neumania and Oslogonites ) and polytoechioid ( Antigonambonites and Raunites ) brachiopods reveal significant differences in the life history of the taxa belonging to these two superfamilies. The Polytoechioidea and probably other members of the Billingsellida had planktotrophic larvae, in which the dorsal and ventral mantle lobes formed separately and without reversion. The 'pedicle sheath' in Antigonambonites is secreted by a section of modified ventral mantle and thus this 'pedicle' is not homologous within the pedicle of rhynchonellate brachiopods. It is likely that polytoechioids and other members of the strophomenate clade had the same type of ontogeny and mode of attachment. In contrast, the ontogeny and mode of attachment of clitambonitoids are similar to that of recent rhynchonellates: their mantle lobes and both valves formed simultaneously, and the pedicle most likely formed from the larval pedicle lobe. Evidence for the lecithotrophic nature of clitambonitoid larva is discussed. This confirms that the Clitambonitoidea, unlike the Polytoechioidea, represents an ingroup within the Rhynchonellata.  相似文献   

14.
Species recognition attributed to the brachiopod family Atrypidae is evaluated based on qualitative and quantified morphological characters. I identified two brachiopod species—Pseudoatrypa lineata and Pseudoatrypa devoniana—from a rich assemblage of brachiopods recovered from the middle Devonian Genshaw Formation of the Traverse Group. Qualitative examination suggested that the former had fine-medium-sized ribbing, a narrow hinge line, widened anterior, moderately steep mid-anterior fold, domal shaped dorsal valve, and an inflated ventral valve in contrast to the coarse ribbing, widened hinge line, narrow anterior, gentle mid-anterior fold, arched-shape dorsal valve, and flat ventral valve of the latter. The shell outline appears rounded for P. lineata and elongated for P. devoniana. Quantitative assessment of the morphological characters on the dorsal, ventral, anterior, and posterior regions of the valves of the two species using geometric morphometric and statistical analyses suggests that the morphologies of the two species are considerably different (P  $ \ll $  0.01). Thus, qualitative differences between the two atrypid species were further corroborated by quantitative results. This emphasizes the fact that these two species of Pseudoatrypa were indeed different from each other. This study highlights the necessity of incorporating quantified morphological characters to successfully investigate the taxonomic distinctness of fossil invertebrates to the species level.  相似文献   

15.
Exceptionally well-preserved impressions of two bundles of bristles protrude from the apertures of small, spiral shells of Pelagiella exigua, recovered from the Kinzers Formation (Cambrian, Stage 4, ‘Olenellus Zone’, c. 512 Ma) of Pennsylvania. These impressions are inferred to represent clusters of chitinous chaetae, comparable to those borne by annelid parapodia and some larval brachiopods. They provide an affirmative test in the early metazoan fossil record of the inference, from phylogenetic analyses of living taxa, that chitinous chaetae are a shared early attribute of the Lophotrochozoa. Shells of Pelagiella exhibit logarithmic spiral growth, microstructural fabrics, distinctive external sculptures and muscle scars characteristic of molluscs. Hence, Pelagiella has been regarded as a stem mollusc, a helcionelloid expressing partial torsion, an untorted paragastropod, or a fully torted basal member of the gastropod crown group. The inference that its chaeta-bearing appendages were anterior–lateral, based on their probable functions, prompts a new reconstruction of the anatomy of Pelagiella, with a mainly anterior mantle cavity. Under this hypothesis, two lateral–dorsal grooves, uniquely preserved in Pelagiella atlantoides, are interpreted as sites of attachment for a long left ctenidium and a short one, anteriorly on the right. The orientation of Pelagiella and the asymmetry of its gills, comparable to features of several living vetigastropods, nominate it as the earliest fossil mollusc known to exhibit evidence of the developmental torsion characteristic of gastropods. This key adaptation facilitated an evolutionary radiation, slow at first and rapid during the Ordovician, that gave rise to the remarkable diversification of the Gastropoda.  相似文献   

16.
Numerous taxa make up the Early Cretaceous fauna of Brazil, including Ornithocheiroidea, Tapejaridae, Thalassodromidae, Chaoyangopteridae and a purported member of Azhdarchidae. Dsungaripteridae has only been tentatively assumed to be present in the form of ‘Santanadactylusspixi. New study of NMSG SAO 251093 (a specimen referred to Thalassodromeus sethi) suggests it is a previously unknown species of dsungaripterid, Banguela oberlii, tax. nov., differing from Thalassodromeus and other pterosaurs from the Early Cretaceous of Brazil by a unique combination of characters, including an upturned jaw tip, a short dorsal mandibular symphyseal shelf (dmss), and an autapomorphic thin crest placed halfway along the fused mandibular symphysis without a keel along the ventral margin of the jaw. B. oberlii, tax. nov., is referred to Dsungaripteridae based on a dmss no longer than the ventral shelf, U-shaped caudal margin of the ventral shelf and lateral margins of the mandibular symphysis concave in dorsal view. B. oberlii, tax. nov., is the youngest known dsungaripterid, and expands known morphological diversity in the clade as well as the Early Cretaceous pterosaur fauna of South America.  相似文献   

17.
Abstract: Brachiopods are marine Lophotrochozoa whose soft parts are enclosed in a bivalved shell. Although brachiopods are represented by a rich record from the Early Cambrian to the present, the origin of their bivalved body plan remains controversial. The Early Cambrian organophosphatic tommotiids Micrina and Paterimitra from Australia have been proposed as stem brachiopods. Here, we describe their earliest ontogeny, indicating that tommotiids possessed bivalved planktotrophic larvae. The curious combinations of characters in Micrina and Paterimitra indicate that they may belong to the stems of the Linguliformea and Rhynchonelliformea, respectively. The bivalved shell of adult living brachiopods may represent a plesiomorphic character retained from planktic tommotiid larvae; the crown group body plan of the Brachiopoda may have evolved through the paedomorphic retention of a bivalved larval state.  相似文献   

18.
Microbilobata avalanchensis n. gen. and n. sp. from the Lower Silurian (upper Wenlock) carbonate rocks of the lower Delorme Group in the Avalanche Lake area, northwestern Canada, is described here as the earliest known terebratulid brachiopod. These small shells (less than 2 mm long) are subtriangular, anteriorly emarginate, possibly punctate, with both valves being sulcate at their anterior halves, the ventral sulcus bearing one prominent plica, and the dorsal sulcus marked by two plicae. Internally, M. avalanchensis has a centronelliform loop extending for about three fifths of the total shell length. The shells are silicified in carbonate rocks of mid to outer shelf origin. M. avalanchensis is relatively rare, with about 40 specimens so far found from samples collected at 58–60 m above the base of section AV5 in the Avalanche Lake area. Its presence in rocks of Wenlock age extends the earliest known terebratulids back about 16 million years from the oldest previously recorded terebratulids (earliest Devonian age). The small size and simple form of the new species suggest that heterochrony (progenesis) could have played a role in the origin of the Terebratulida. M. avalanchensis serves as a good example of Cope's Rule, indicating that the terebratulids evolved from a very small, unspecialized ancestor. The unusually small size of this taxon also offers one explanation as to why some ancestors or transitional forms of major taxonomic groups are extremely difficult to find in the fossil record.  相似文献   

19.
The freely spawned eggs of Crania go through radial cleavage, embolic gastrulation, and the posteroventral part of the archenteron forms mesoderm through modified enterocoely. The blastopore closes in the posterior end of the larva. The ciliated, lecithotrophic larva has four pairs of coelomic pouches and three pairs of dorsal setal bundles. At metamorphosis, the larva curls ventrally by contraction of a pair of midventral muscles, which are extensions of the first pair of coelomic sacs; the larva attaches by the epithelium just behind the closed blastopore. The brachial valve is secreted by the middle part of the dorsal epithelium and the pedicle valve is secreted by the attachment epithelium. The second pair of coelomic sacs develop small attachment areas at the edge of the dorsal valve and become the lophophore coelom (mesocoel); the third pair of coelomic sacs become the body coelom (metacoel) with the adductor muscles. The posterior position of the closing blastopore is characteristic of deuterostomes. The ventral curving of the settling larva and the formation of both valves from dorsal epithelial areas indicate that the brachiopods have a very short ventral side as opposed to the phoronids. It is concluded that both groups have originated from a creeping ancestor with a straight gut.  相似文献   

20.
A morphological comparison of shell‐muscle contacts in coleoid cephalopods mainly from the Early Jurassic (Toarcian) Posidonia Shales of Holzmaden (Germany), the Middle Jurassic (Callovian) Oxford Clay of Christian Malford (UK), Late Jurassic (Kimmeridgian‐Tithonian) plattenkalks of Solnhofen (Germany), and the Late Cretaceous (Cenomanian) of Hâdjoula and Hâkel (Lebanon) provides new and meaningful insights into their locomotion systems. The study shows that both pro‐ostracum‐ and gladius‐bearing coleoids are typified by a marginal mantle attachment and by distinctly separated fins, which usually insert (indirectly via the shell sac and basal fin cartilages) to posterior shell parts. While absent in gladius‐bearing forms, mantle‐locking cartilages might have existed already in pro‐ostracum‐bearing belemnoids. Similar to ectocochleate ancestors, funnel‐ and cephalic retractors are generally attached to the internal (ventral) shell surface. A comparison of Mesozoic and Recent gladius‐bearing coleoids shows that the locomotion system (most significantly the dorsal mantle configuration, and the presence of nuchal‐ and funnel‐locking cartilages) is fundamentally different. This does not support the concept of ‘fossil teuthids’, but suggests, owing to similarities with Recent Vampyroteuthis, placement of Mesozoic gladius‐bearing coleoids within the Octobrachia (Octopoda + Vampyromorpha). Classification of Mesozoic gladius‐bearing coleoids as octobrachians implies that: (1) unambiguous teuthids are still unknown in the fossil record and (2) the similarity between Recent and some fossil gladiuses represents a matter of homoplasy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号