首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two F-18 labeled fluoroarylvaline derivatives, methyl 2-(2-[18F]fluoro-4-nitrobenzamido)-3-methylbutanoate ([18F]1, [18F]MFNBMB) and its corresponding acid 2-(2-[18F]fluoro-4-nitrobenzamido)-3-methylbutanoic acid ([18F]2, [18F]FNBMBA), have been designed and synthesized, respectively, by our team. Meanwhile, we research on their biodistributions in mice model bearing S 180 tumor. Furthermore, we also carried out the biological evaluations of 2-[18F]fluorodeoxyglucose ([18F]FDG) and O-2-[18F]fluoroethyl-l-tyrosine (l-[18F]FET) in the same model for comparison with our targeting molecules [18F]1 and [18F]2. Excitingly, the tumor/blood (T/Bl) and tumor/brain (T/Br) ratios were 2.91, 7.06 at 30 min, 3.44, 5.61 at 60 min post injection for [18F]1, 2.32, 13.30 for [18F]2 at 30 min post injection, which were obviously superior to [18F]FDG and l-[18F]FET in the same model and demonstrated that [18F]1 and [18F]2, especially [18F]2, were potential PET imaging agents for tumor detection.  相似文献   

2.
A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure–activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 (18F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([18F]-14) in high radiochemical yield and specific activity. In vivo studies of [18F]-14 revealed this agent as a promising probe for molecular imaging of glioma.  相似文献   

3.
A new [18F] labeled amino acid anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid 9 (anti-2-[18F]FACBC) was synthesized in 30% decay-corrected yield with high radiochemical purity over 99%. The cyclic sulfamidate precursor was very stable and highly reactive towards nucleophilic radiofluorination. Cell uptake assays with rat 9L gliosarcoma cells showed that [18F]9 was transported into tumor cells via multiple amino acid transport systems, including L and A systems. Biodistribution study in rats with intracranial 9L gliosarcoma tumors demonstrated that [18F]9 had a rapid and prolonged accumulation in tumors with 26:1 tumor to brain ratio at 120 min post-injection. In this model, [18F]9 is a potential PET tracer for brain tumor imaging.  相似文献   

4.
The purpose of this study was to synthesize 6-[1-(2-[18F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline ([18F]FPTQ, [18F]7a) and to evaluate its potential as a positron emission tomography ligand for imaging metabotropic glutamate receptor type 1 (mGluR1) in the rat brain. Compound [18F]7a was synthesized by [18F]fluorination of 6-[1-(2-bromo-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline (7b) with potassium [18F]fluoride. At the end of synthesis, 1280-1830 MBq (n = 8) of [18F]7a was obtained with >98% radiochemical purity and 118-237 GBq/??mol specific activity using 3300-4000 MBq of [18F]F. In vitro autoradiography showed that [18F]7a had high specific binding with mGluR1 in the rat brain. Biodistribution study using a dissection method and small-animal PET showed that [18F]7a had high uptake in the rat brain. The uptake of radioactivity in the cerebellum was reduced by unlabeled 7a and mGluR1-selective ligand JNJ-16259685 (2), indicating that [18F]7a had in vivo specific binding with mGluR1. Because of a low amount of radiolabeled metabolite present in the brain, [18F]7a may have a limiting potential for the in vivo imaging of mGluR1 by PET.  相似文献   

5.
Positron emission tomography (PET) using fluorine-18 (18F)-labeled 2-nitroimidazole radiotracers has proven useful for assessment of tumor oxygenation. However, the passive diffusion-driven cellular uptake of currently available radiotracers results in slow kinetics and low tumor-to-background ratios. With the aim to develop a compound that is actively transported into cells, 1-(6′-deoxy-6′-[18F]fluoro-β-d-allofuranosyl)-2-nitroimidazole (β-[18F]1), a putative nucleoside transporter substrate, was synthetized by nucleophilic [18F]fluoride substitution of an acetyl protected labeling precursor with a tosylate leaving group (β-6) in a final radiochemical yield of 12 ± 8% (n = 10, based on [18F]fluoride starting activity) in a total synthesis time of 60 min with a specific activity at end of synthesis of 218 ± 58 GBq/μmol (n = 10). Both radiolabeling precursor β-6 and unlabeled reference compound β-1 were prepared in multistep syntheses starting from 1,2:5,6-di-O-isopropylidene-α-d-allofuranose. In vitro experiments demonstrated an interaction of β-1 with SLC29A1 and SLC28A1/2/3 nucleoside transporter as well as hypoxia specific retention of β-[18F]1 in tumor cell lines. In biodistribution studies in healthy mice β-[18F]1 showed homogenous tissue distribution and excellent metabolic stability, which was unaffected by tissue oxygenation. PET studies in tumor bearing mice showed tumor-to-muscle ratios of 2.13 ± 0.22 (n = 4) at 2 h after administration of β-[18F]1. In ex vivo autoradiography experiments β-[18F]1 distribution closely matched staining with the hypoxia marker pimonidazole. In conclusion, β-[18F]1 shows potential as PET hypoxia radiotracer which merits further investigation.  相似文献   

6.
The purpose of this study was to develop 4-[18F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([18F]FITM, [18F]4) as a new PET ligand for imaging metabotropic glutamate receptor subtype 1 (mGluR1). [18F]4 was synthesized by [18F]fluorination of a novel nitro precursor 3 with [18F]KF in the presence of Kryptofix 222. At the end of synthesis, 429-936 MBq (n = 8) of [18F]4 was obtained with >99% radiochemical purity and 204-559 GBq/μmol specific activity starting from 6.7 to 13.0 GBq of [18F]F. The brain distribution of [18F]4 was determined by the in vitro and ex vivo autoradiography using rat brain sections. The in vitro and in vivo specific binding of [18F]4 to mGluR1 was detected in the cerebellum, thalamus, hippocampus, and striatum. These results suggest that [18F]4 is a promising PET ligand for the in vivo evaluation of mGluR1.  相似文献   

7.
The purpose of this study was to develop three new radiotracers, 1-(cyclopropylmethyl)-4-([11C/18F]substituted-phenyl)piperidin-1-yl-2-oxo-1,2-dihydropyridine-3-carbonitrile ([11C]1, [11C]2, and [18F]4), and to examine their specific bindings with metabotropic glutamate receptor subtype 2 (mGluR2) in rat brain sections by using in vitro autoradiography. These compounds were found to possess potent in vitro binding affinities (Ki: 8.0–34.1 nM) for mGluR2 in rat brain homogenate. [11C]1, [11C]2, and [18F]4 were synthesized by [11C/18F]alkylation of the corresponding phenol precursors with [11C]methyl iodide or [18F]fluoroethyl bromide with >98% radiochemical purity and 80–130 GBq/μmol specific activity at the end of synthesis. In vitro autoradiography indicated that these radiotracers showed heterogeneous specific bindings in mGluR2-rich brain regions, such as the cerebral cortex, striatum, hippocampus, and granular layer of the cerebellum.  相似文献   

8.
A new dopamine transporter (DAT) ligand, (E)-N-(3-iodoprop-2-enyl)-2β-carbofluoroethoxy-3β-(4′-methyl-phenyl) nortropane (FE-PE2I, 6), derived from PE2I (1), was prepared and found to be a potent inhibitor of rodent DAT in vitro. Compound 6 was radiolabelled with fluorine-18 (t1/2 = 109.8 min) for PET studies in monkeys. In vivo PET measurements showed a regional distribution in brain that corresponds to the known distribution of DAT. This binding was specific, reversible and the kinetics of [18F]6 binding in brain were faster than for its lead compound, [11C]1. The possible presence of a hydroxymethyl-radiometabolite formed by oxidation in the 3β-benzylic position of [18F]6 warrants further detailed evaluation of the metabolism of [18F]6. [18F]6 is a potential radioligand for imaging DATs in the human brain with PET.  相似文献   

9.
The interaction of tropomyosin-related kinase B (TrkB) with the cognate ligand brain-derived neurotrophic factor (BDNF) mediates fundamental pathways in the development of the nervous system. TrkB signaling alterations are linked to numerous neurodegenerative diseases and conditions. Herein we report the synthesis, biological evaluation and radiosynthesis of the first TrkB radioligands based on the recently identified 7,8-dihydroxyflavone chemotype. 2-(4-[18F]fluorophenyl)-7,8-dihydroxy-4H-chromen-4-one ([18F]10b) was synthesized in high radiochemical yields via an efficient SNAr radiofluorination involving a para-Michael acceptor substituted aryl followed by BBr3-promoted double demethylation. Selective N-[11C]methylation afforded 2-(4-([N-methyl-11C]-dimethylamino)phenyl)-7,8-dihydroxy-4H-chromen-4-one ([11C]10c) from the fully deprotected catechol-bearing normethyl precursor 13 with [11C]MeOTf. In vitro autoradiography of [18F]10b with transverse rat brain sections revealed high specific binding in the cortex, striatum, hippocampus and thalamus in accordance with expected TrkB distribution. Blockade experiments with both 7,8-dihydroxyflavone (1a) and TrkB cognate ligand, BDNF, led to decreases of 80% and 85% of radioligand binding strongly supporting the hypothesis that 7,8-dihydroxyflavones exert their effect on TrkB phosphorylation via direct TrkB extracellular domain (ECD) binding. Positron emission tomography (PET) studies revealed that [18F]10b and [11C]10c brain uptake is minimal and that they are rapidly eliminated from the plasma (effective plasma half-life 5–10 min) via hepatic secretion. Nevertheless, the high specific binding and TrkB specificity derived from in vitro experiments suggests that the 7,8-disubstituted flavone chemotype represents a promising scaffold for the development of TrkB radiotracers for PET.  相似文献   

10.
Two novel pyrazolo[1,5-a]pyrimidine derivatives, 7-(2-[18F]fluoroethylamino)-5-methylpyrazolo[1,5-a]pyrimidine-3-carbonitrile ([18F]FEMPPC, [18F]1) and N-(2-(3-cyano-5-methylpyrazolo[1,5-a]pyrimidin-7-ylamino)ethyl)-2-[18F]fluoro-4-nitrobenzamide ([18F]FCMPPN, [18F]2), have been designed and successively labeled with 18F by the nucleophilic substitution employing tosylate and nitryl as leaving groups, respectively. The radiochemical synthesis of both compounds was completed within 60 min with final high-performance liquid chromatography purification included. The corresponding radiochemical yields (without decay correction) were approximately 35% and 30%, respectively. Meanwhile, we compared the uptake characteristics of [18F]1 and [18F]2 with those of [18F]FDG and L-[18F]FET in S180 tumor cells. Furthermore, the tumor uptake of [18F]1 and [18F]2 was assessed in mice bearing S180 tumor and compared with [18F]FDG and L-[18F]FET in the same animal model. In vitro cell uptake studies showed [18F]1 had higher uptake than [18F]FDG, [18F]2 and L-[18F]FET over the 2 h period. In ex vivo biodistribution showed tumor/brain uptake ratios of [18F]2 were 12.35, 10.44, 8.69 and 5.13 at 15 min, 30 min, 60 min and 120 min post-injection, much higher than those of L-[18F]FET (2.43, 2.54, 2.93 and 2.95) and [18F]FDG (0.59, 0.61, 1.02 and 1.33) at the same time point. What’s more, the uptake of [18F]1 in tumor was 1.88, 4.37, 5.51, 2.95 and 2.88 at 5 min, 15 min, 30 min, 60 min and 120 min post-injection, respectively. There was a remarkable increasing trend before 30 min. The same trend was present for L-[18F]FET before 30 min and [18F]FDG before 60 min. Additionally, the tumor/brain uptake ratios of [18F]1 were superior to those of [18F]FDG at all the selected time points, the tumor/muscle and tumor/blood uptake ratios of [18F]1 at 30 min were higher than those of L-[18F]FET at the same time point. MicroPET image of [18F]1 administered into S180 tumor-bearing mouse acquired at 30 min post-injection illustrated that the uptake in S180 tumor was obvious. These results suggest that compound [18F]1 could be a new probe for PET tumor imaging.  相似文献   

11.
Three new 18F labeled fluoroalkyl tyrosine derivatives, O-(2-[18F]fluoroethyl)-α-methyltyrosine (FEMT, [18F]2), O-(2-[18F]fluoroethyl)-2-l-azatyrosine (FEAT, [18F]3), O-(2-[18F]fluoroethyl)-l-tyrosineamide (FETA, [18F]4) have been synthesized and radiofluorinated with 5–34% decay-corrected yield. In vitro studies were carried out in U-138 MG human glioblastoma. Cellular uptake of new tracers was compared to clinically utilized imaging agent O-(2-[18F]fluoroethyl)-l-tyrosine (FET, [18F]1). The uptake of tracers followed the order of FET ([18F]1) > FEAT([18F]3) > FEMT ([18F]2)  FETA ([18F]4).  相似文献   

12.
Gastrin-releasing peptide receptors (GRP-Rs, also known as bombesin 2 receptors) are overexpressed in a variety of human cancers, including prostate cancer, and therefore they represent a promising target for in vivo imaging of tumors using positron emission tomography (PET). Structural modifications of the non-peptidic GRP-R antagonist PD-176252 ((S)-1a) led to the identification of the fluorinated analog (S)-3-(1H-indol-3-yl)-N-[1-[5-(2-fluoroethoxy)pyridin-2-yl]cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)ureido]propionamide ((S)-1m) that showed high affinity and antagonistic properties for GRP-R. This antagonist was stable in rat plasma and towards microsomal oxidative metabolism in vitro. (S)-1m was successfully radiolabeled with fluorine-18 through a conventional radiochemistry procedure. [18F](S)-1m showed high affinity and displaceable interaction for GRP-Rs in PC3 cells in vitro.  相似文献   

13.
The [18F]fluorocyclobutyl group has the potential to be a metabolically stable prosthetic group for PET tracers. The synthesis of the radiolabeling precursor cis-cyclobutane-1,3-diyl bis(toluene-4-sulfonate) 8 was obtained from epibromohydrin in 7 steps (2% overall yield). The radiolabeling of this precursor 8 and its conjugation to l-tyrosine as a model system was successfully achieved to give the new non-natural amino acid 3-[18F]fluorocyclobutyl-l-tyrosine (L-3-[18F]FCBT) [18F]17 in 8% decay-corrected yield from the non-carrier-added [18F]fluoride. L-3-[18F]FCBT was investigated in vitro in different cancer cell lines to determine the uptake and stability. The tracer [18F]17 showed a time dependent uptake into different tumor cell lines (A549, NCI-H460, DU145) with the best uptake of 5.8% injected dose per 5 × 105 cells after 30 min in human lung carcinoma cells A549. The stability of L-3-[18F]FCBT in human and rat plasma and the stability of the non-radioactive L-3-FCBT in rat hepatocytes were both found to be excellent. These results show that the non-natural amino acid L-3-[18F]FCBT is a promising metabolically stable radiotracer for positron emission tomography.  相似文献   

14.
Two methods were investigated for the no-carrier-added synthesis of N-succinimidyl 4-[18F]fluorobenzoate (S[18F]FB). The first, an attempted nucleophilic aromatic substitution by [18F]fluoride on N-succinimidyl 4-nitrobenzoate was unsuccessful. The second method involved three steps; [18F]fluoride for trimethylammonium substitution on 4-formyl-N,N,N-trimethylanilinium triflate, oxidation to 4-[18F]fluorobenzoic acid, followed by reaction with N-hydroxysuccinimide and dicyclohexylcarbodiimide to form S[18F]FB. Total synthesis and purification time was 100 min and the overall radiochemical yield was 25% (decay corrected). A monoclonal antibody F(ab′)2 fragment could be labeled in 40–60% yield by reaction with S[18F]FB for 15–20 min. The tissue distribution in normal mice and in vitro tumor binding of the antibody F(ab′)2 labeled by reaction with S[18F]FB were comparable to those observed for the fragment after radioiodination using N-succinimidyl 4-[125I]iodobenzoate.  相似文献   

15.
Vesicular acetylcholine transporter (VAChT) is a reliable biomarker for assessing the loss of cholinergic neurons in the brain that is associated with cognitive impairment of patients. 5-Hydrotetralin compound (±)-5-OH-VAT is potent (Ki?=?4.64?±?0.32?nM) and selective for VAChT (>1800-fold and 398-fold for σ1 and σ2 receptor, respectively) with favorable hydrophilicity (LogD?=?1.78), while (?)-5-OH-VAT originally serves as the radiolabeling precursor of (?)-[18F]VAT, a promising VAChT radiotracer with a logD value of 2.56. To evaluate (?)-5-OH-[18F]VAT as a radiotracer for VAChT, we performed in vitro binding assay to determine the potency of the minus enantiomer (?)-5-OH-VAT and plus enantiomer (+)-5-OH-VAT, indicating that (?)-5-OH-VAT is a more potent VAChT enantiomer. Radiosynthesis of (?)-5-OH-[18F]VAT was explored using three strategies. (?)-5-OH-[18F]VAT was achieved with a good yield (24?±?6%) and high molar activity (~37?GBq/µmol, at the end of synthesis) using a microwave assisted two-step one-pot procedure that started with di-MOM protected nitro-containing precursor (?)-6. MicroPET studies in the brain of nonhuman primate (NHP) suggest that (?)-5-OH-[18F]VAT readily penetrated the blood brain barrier and specifically accumulated in the VAChT-enriched striatum with improved washout kinetics from striatum compared to [18F]VAT. Nevertheless, the lower target to non-target ratio may limit its use for in vivo measurement of the VAChT level in the brain.  相似文献   

16.
Radiosynthesis and in vitro evaluation of [18F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([18F]BMS-754807 or [18F]1) a specific IGF-1R inhibitor was performed. [18F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [18F]TBAF in DMSO at 170 °C at high radiochemical purity and specific activity (1–2 Ci/μmol, N = 10). The proof of concept of IGF-IR imaging with [18F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [18F]1 can be a potential PET tracer for monitoring IGF-1R.  相似文献   

17.
The inertness of the alkenic bond towards electrophilic additions in 3-exocyano-3-(methylthio)-2-thiabicyclo[2.2.1]hept-5-ene S,S,S′,S′-tetraoxide (5), 3,6-dihydro-2-(methylthio)-2H-thiopyran-2-carbonitrile S,S,S′,S′-tetraoxide (3), and 2-(acetamidomethyl)-3,6-dihydro-2-(methylthio)-2H-thiopyran S,S,S′,S′-tetraoxide (4) is attributed to the “supra-annular effect” and field effects. Conformational analysis of a pentadeuterated derivative of 4 (10) is reported. On the basis of the 220-MHz 1H n.m.r.-spectral data of 10, the compound was concluded to adopt the 0H2 conformation in chloroform solution.  相似文献   

18.
Two S-[18F]fluoroalkylated diarylguanidines were synthesized and evaluated in vitro as potential tracers for imaging of N-methyl-d-aspartate receptors (NMDARs) with positron emission tomography (PET). [18F]1 and [18F]10 were synthesized by [18F]fluoroethylation and [18F]fluoromethylation of the thiol precursor 6, respectively. [18F]1 is a promising candidate NMDAR PET tracer, with low nanomolar affinity for the NMDA PCP-site, high selectivity and moderate lipophilicity.  相似文献   

19.
No-carrier-added (NCA)3-(2′-[18F]fluoroethyl)spiperone (5), a new dopamine receptor-binding radiopharmaceutical for positron emission tomography, was synthesized by two different methods. Alkylation of the amide nitrogen in spiperone by NCA [18F]fluorobromoethane in the presence of a strong base gave 5 (Method A). Experimental methods were also developed for the syntheses of functional 3-N-alkylderivatives of spiperone such as 3-(2′-bromoethyl)- or 3-(2′-methylsulfonyloxyethyl)spiperone (4a and 4b, respectively). These derivatives (4) reacted with NCA Ag18F, Cs18F or K18F/Kryptofix 222 in acetonitrile or DMSO to give 5 (Method B). Method B, using K18F/Kryptofix 222 in acetonitrile provided 5 in multimillicure amounts (30–40% isolated radiochemical yield) with a specific activity of 2–10/μmol (EOS) in less than 60 min. This one-step, one-pot synthesis is simple, and the high radiochemical yield of 5, as well as the 110 min half-life of 18F, permit multiple tomographic studies a day with one preparation. Tomographic results in monkey brain with 5 are consistent with the labeling of dopamine-D2 receptor systems.  相似文献   

20.
PR04.MZ 8-(4-fluoro-but-2-ynyl)-3-p-tolyl-8-aza-bicyclo[3.2.1]octane-2-carboxylic acid methyl ester (1) and LBT999 8-((E)-4-fluoro-but-2-enyl)-3b-p-tolyl-8-aza-bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester (2) are selective dopamine reuptake inhibitors, derived from cocaine. Compounds 1 and 2 were labelled with fluorine-18 at their terminally fluorinated N-substituents employing microwave enhanced direct nucleophilic fluorination. K[18F]F? Kryptofix®222 cryptate, tetrabutyl ammonium [18F]fluoride and caesium [18F]fluoride were compared as fluoride sources under conventional and microwave enhanced conditions. Fluorination yields were remarkably increased under microwave irradiation for all three fluoride salts. Radiochemically pure (>98%) [18F]PR04.MZ (0.95–1.09 GBq, 42–135 GBq/μmol) was obtained within 34–40 min starting from 3.0 GBq [18F]fluoride ion in 32–36% non-decay-corrected overall yield using K[18F]F?Kryptofix®222 cryptate in MeCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号