首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IntroductionPresent data indicate that merging beneficial structural elements from previously published DAT-ligands highest DAT affinity, selectivity and a suitable metabolic profile should be achieved. This combination led to the development of IPCIT and FE@IPCIT.MethodsPrecursor synthesis was done starting from cocaine in a six step reaction. O-[11C]-methylation was established using [11C]methyl iodide, optimized and subsequently automated. Small scale 18F-fluroroethylation as well as optimization of reaction parameters and automation were performed. Affinity and selectivity of the candidate substances were tested in standard binding experiments on human membranes. Metabolic stability and blood–brain-barrier (BBB) penetration were determined.ResultsPrecursor compound, IPCITacid, and reference compounds, IPCIT and FE@IPCIT, were obtained in 4.9%, 12.7% and 4.1% yield, respectively. Automated radiosynthesis of [11C]IPCIT yielded 1.9 ± 0.7 GBq (12.5 ± 4%, corrected for decay). Optimum parameters for 18F-fluoroethylation were 110 °C for 15 min under TBAH catalysis, yielding 67 ± 16% radiochemical incorporation. Affinity was determined as 1.7 ± 0.6 nM for IPCIT, 1.3 ± 0.2 nM for FE@IPCIT and 37 ± 13 nM for the precursor molecule, IPCIT-acid. Results from in vitro and in silico evaluations revealed high stability but also high lipophilicity.ConclusionPresent data indicate high affinity and stability of both IPCIT and FE@IPCIT. Radiolabelling, optimization of reaction parameters and automation succeeded. On the other hand, data concerning BBB-penetration are not promising.  相似文献   

2.
The reference standard IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from tert-butyl (S)-5-oxopyrrolidine-2-carboxylate, fluoroethylbromide, and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 12% in three steps. The target tracer [18F]IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-[18F]fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from desmethyl-GSK1482160 with 2-[18F]fluoroethyl tosylate, prepared from 1,2-ethylene glycol-bis-tosylate and K[18F]F/Kryptofix2.2.2, in two steps and isolated by HPLC combined with SPE in 1–3% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity at end of bombardment (EOB) was 74–370?GBq/μmol. The potency of IUR-1601 in comparison with GSK1482160 was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for IUR-1601 and GSK1482160 are 4.31 and 5.14?nM, respectively.  相似文献   

3.
Positron-emitting beta-adrenoceptor ligands for the CNS could allow determination of changes in beta-adrenoceptor availability after treatment of patients with norepinephrine reuptake inhibitors or tricyclic antidepressants, and differential diagnosis between multiple sclerosis and other brain disorders in an early stage of the disease. No ligands suitable for this purpose are available for human use. In order to prepare a tracer for human studies, we labeled the biologically active enantiomer of the beta-blocker exaprolol with (11)C. Exaprolol has the appropriate lipophilicity (log P + 1.6) for entry of the CNS and is claimed to be a very potent beta-adrenoceptor antagonist. (S)-Desisopropyl-exaprolol was synthesized by reaction of 2-hexylphenol with (S)-glycidyl-nosylate followed by ring opening using ammonia gas. The desisopropyl precursor was reacted with (11)C-acetone in methanol to produce (S)-[(11)C]-exaprolol. Radiochemical purification was performed with RP-HPLC and was followed by Sep-Pak formulation. The labeled product was i.v. injected into male Wistar rats. Brain images were acquired using a microPET Focus 220 and the biodistribution of (11)C was assessed. The radiochemical yield of (S)-[(11)C]-exaprolol was 7% with a total synthesis time of 30 min. Specific activities were >10 GBq/micromol. Brain uptake of the tracer reached a maximum after 15 min. Standardized uptake values were moderate (0.5-0.9) but sufficient for imaging. However, beta-blockade (propranolol, 2.5mg/kg body weight) did not lower tracer uptake in any CNS region and washout from the brain was not accelerated when propranolol was administered 40 min after injection of (S)-[(11)C]-exaprolol. Tracer binding in lung, spleen and erythrocytes was lowered after beta-blockade, but the myocardial uptake of radioactivity was not affected. These data indicate that (S)-[(11)C]-exaprolol is not a suitable beta-adrenoceptor ligand for PET, probably because the in vivo affinity of exaprolol to beta-adrenoceptors is in the nM rather than the sub-nM range. The observed inhibition of tracer uptake in lung, spleen and erythrocytes seems due to an interaction of propranolol with amine transporters rather than beta-adrenoceptors.  相似文献   

4.
The (18)F-labeled beta2-adrenergic receptor ligand (R,R)(S,S) 5-(2-(2-[4-(2-[(18)F]fluoroethoxy)phenyl]-1-methylethylamino)-1-hydroxyethyl)-benzene-1,3-diol, a derivative of the original highly selective racemic fenoterol, was synthesized in an overall radiochemical yield of 20% after 65 min with a radiochemical purity higher than 98%. The specific activity was in the range of 50-60 GBq/micromol. In vitro testing of the non-radioactive fluorinated fenoterol derivative with isolated guinea pig trachea was conducted to obtain an IC(50) value of 60 nM. Preliminary ex vivo organ distribution and in vivo experiments with positron emission tomography (PET) on guinea pigs were performed to study the biodistribution as well as the displacement of the radiotracer to prove specific binding to the beta2-receptor.  相似文献   

5.
The reference standard methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate (5) and its precursor 2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucine (6) were synthesized from 6-amino-2-mercaptopyrimidin-4-ol and BnBr with overall chemical yield 7% in five steps and 4% in six steps, respectively. The target tracer [11C]methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate ([11C]5) was prepared from the acid precursor with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40–50% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity (SA) at EOB was 370–1110 GBq/μmol with a total synthesis time of ~40-min from EOB. The radioligand depletion experiment of [11C]5 did not display specific binding to CX3CR1, and the competitive binding assay of ligand 5 found much lower CX3CR1 binding affinity.  相似文献   

6.
High performance liquid chromatography (HPLC) has been used to determine the internal levels of amino acids in Rhodobacter capsulatus E1F1 cells, subjected to different treatments and nutritional conditions. Glutamine synthetase activity and enzyme concentration correlated negatively with the level of glutamine, suggesting that glutamine per se acts as a co-repressor in the enzyme synthesis. Moreover, addition of the specific inhibitor L-methionine-D,L-sulfoximine, that produced an increase in enzyme concentration, specifically promoted a depletion of intracellular glutamine.  相似文献   

7.
c-MET-positive NSCLC is an important subtype accounting for about 5%~22% of lung cancer. NSCLC patients with activating c-MET are intensively sensitive to c-MET selective receptor tyrosine kinase (RTK) inhibitors, so we aimed to develop a specific PET probe targeting to c-MET-positive NSCLC for potential patients screened by PET/CT. Herein, PET tracer 18F-radiolabeled crizotinib derivative ([18F]FPC) was successfully achieved through a simple one-step 18F-labeling method. [18F]FPC PET imaging on c-MET-positive (as well as blocking group) and negative NSCLC models were further evaluated, and results showed that [18F]FPC was effective as a PET imaging probe that targeted c-MET-positive tumor. Therefore, [18F]FPC could be a potential PET imaging probe for NSCLC tumor which was sensitive to c-MET-TKIs. By virtue of this property, it will benefit NSCLC patients for c-MET-TKI treatment.  相似文献   

8.
Biomolecules, including peptides,1-9 proteins,10,11 and antibodies and their engineered fragments,12-14 are gaining importance as both potential therapeutics and molecular imaging agents. Notably, when labeled with positron-emitting radioisotopes (e.g., Cu-64, Ga-68, or F-18), they can be used as probes for targeted imaging of many physiological and pathological processes.15-18 Therefore, significant effort has devoted to the synthesis and exploration of 18F-labeled biomolecules. Although there are elegant examples of the direct 18F-labeling of peptides,19-22 the harsh reaction conditions (i.e., organic solvent, extreme pH, high temperature) associated with direct radiofluorination are usually incompatible with fragile protein samples. To date, therefore, the incorporation of radiolabeled prosthetic groups into biomolecules remains the method of choice.23,24N-Succinimidyl-4-[18F]fluorobenzoate ([18F]SFB),25-37 a Bolton-Hunter type reagent that reacts with the primary amino groups of biomolecules, is a very versatile prosthetic group for the 18F-labeling of a wide spectrum of biological entities, in terms of its evident in vivo stability and high radiolabeling yield. After labeling with [18F]SFB, the resulting [18F]fluorobenzoylated biomolecules could be explored as potential PET tracers for in vivo imaging studies.1 Most [18F]SFB radiosyntheses described in the current literatures require two or even three reactors and multiple purifications by using either solid phase extraction (SPE) or high-performance liquid chromatography (HPLC). Such lengthy processes hamper its routine production and widespread applications in the radiolabeling of biomolecules. Although several module-assisted [18F]SFB syntheses have been reported,29-32, 41-42 they are mainly based on complicated and lengthy procedures using costly commercially-available radiochemistry boxes (Table 1). Therefore, further simplification of the radiosynthesis of [18F]SFB using a low-cost setup would be very beneficial for its adaption to an automated process.Herein, we report a concise preparation of [18F]SFB, based on a simplified one-pot microwave-assisted synthesis (Figure 1). Our approach does not require purification between steps or any aqueous reagents. In addition, microwave irradiation, which has been used in the syntheses of several PET tracers,38-41 can gives higher RCYs and better selectivity than the corresponding thermal reactions or they provide similar yields in shorter reaction times.38 Most importantly, when labeling biomolecules, the time saved could be diverted to subsequent bioconjugation or PET imaging step.28,43 The novelty of our improved [18F]SFB synthesis is two-fold: (1) the anhydrous deprotection strategy requires no purification of intermediate(s) between each step and (2) the microwave-assisted radiochemical transformations enable the rapid, reliable production of [18F]SFB.Download video file.(51M, mov)  相似文献   

9.
Two [18F]-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-[18F]- or 4-[18F]-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies.  相似文献   

10.
Given the ever-present demand for improved PET radiotracer in oncology imaging, we have synthesized 2-(3,4-dimethoxyphenyl)-6-(2-[18F]fluoroethoxy)benzothiazole ([18F]FEDBT), a fluorine-18-containing fluoroethylated benzothiazole to explore its utility as a PET imaging tracer. [18F]FEDBT was prepared via kryptofix-mediated nucleophilic substitution of the tosyl group precursor. Fractionated ethanol-based solid-phase (SPE cartridge-based) purification afforded [18F]FEDBT in 60% radiochemical yield (EOB), with radiochemical purity in excess of 98% and the specific activity was 35 GBq/μmol. The radiotracer displayed clearly higher cellular uptake ratio in various breast cancer cell lines MCF7, MDA-MB-468 and MDA-MB-231. However, both biodistribution and microPET studies have showed an higher abdominal accumulation of [18F]FEDMBT and the tumor/muscle ratio of 1.8 was observed in the MDA-MB-231 xenograft tumors mice model. Further the lipophilic improvement is needed for the reducement of hepatobilliary accumulation and to promote the tumor uptake for PET imaging of breast cancer.  相似文献   

11.
A novel fluorine-18-labeled O6-benzylguanine (O6-BG) derivative, O6-[4-(2-[18F]fluoroethoxymethyl)benzyl]guanine (O6-[18F]FEMBG, [18F]1), has been synthesized for evaluation as a potential positron emission tomography (PET) probe for the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) in cancer chemotherapy. The appropriate radiolabeling precursor N(2,9)-bis(p-anisyldiphenylmethyl)-O6-[4-(hydroxymethyl)benzyl]guanine (6) and reference standard O6-[4-(2-fluoroethoxymethyl)benzyl]guanine (O6-FEMBG, 1) were synthesized from 1,4-benzenedimethanol and 2-amino-6-chloropurine in four or six steps, respectively, with moderate to excellent chemical yields. The target tracer O6-[18F]FEMBG was prepared in 20-35% radiochemical yields by reaction of MTr-protected precursor 6 with [18F]fluoroethyl bromide followed by quick deprotection reaction and purification with a simplified Silica Sep-Pak method. Total synthesis time was 60-70 min from the end of bombardment. Radiochemical purity of the formulated product was >95%, with a specific radioactivity of >1.0 Ci/micromol at the end of synthesis. The activity of unlabeled O6-FEMBG was evaluated via an in vitro AGT oligonucleotide assay. Preliminary findings from biological assay indicate that the synthesized analogue has similarly strong inhibiting effect on AGT in comparison with O6-BG and O6-4-fluorobenzylguanine (O6-FBG). The results warrant further in vivo evaluation of O6-[18F]FEMBG as a new potential PET probe for AGT.  相似文献   

12.
Summary S-[2-Carboxy-1-(1H-imidazol-4-yl)ethyl]-3-mercaptopyruvic acid (I) was chemically synthesized in 15% yield by incubating a reaction mixture oftrans-urocanic acid and 3-fold excess of 3-mercaptopyruvic acid at 45°C for 6 days. The synthesized compound was characterized by fast-atom-bombardment mass spectrometry and high-voltage paper electrophoresis. CompoundI was identified with a product of an enzymatic reaction ofS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-l-cysteine (II) with rat liver homogenate in a phosphate buffer, pH 7.4. CompoundI was degraded toS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-3-mercaptolactic acid (III), a compound previously found in human urine [Kinuta et al. (1994) Biochem J 297: 475–478], by incubation with rat liver homogenate. From these results, we suggest that compoundI is a metabolic intermediate for the formation of compoundIII from compoundII. The present pathway follows a formation of compoundII fromS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl] gluthathione [Kinuta et al. (1993) Biochim Biophys Acta 1157: 192–198], a proposed metabolite ofl-histidine.  相似文献   

13.
A new [18F] labeled amino acid anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid 9 (anti-2-[18F]FACBC) was synthesized in 30% decay-corrected yield with high radiochemical purity over 99%. The cyclic sulfamidate precursor was very stable and highly reactive towards nucleophilic radiofluorination. Cell uptake assays with rat 9L gliosarcoma cells showed that [18F]9 was transported into tumor cells via multiple amino acid transport systems, including L and A systems. Biodistribution study in rats with intracranial 9L gliosarcoma tumors demonstrated that [18F]9 had a rapid and prolonged accumulation in tumors with 26:1 tumor to brain ratio at 120 min post-injection. In this model, [18F]9 is a potential PET tracer for brain tumor imaging.  相似文献   

14.
The beta-adrenergic receptor ligand (S)-4-(3-(2'-[18F]-fluoroethylamino)-2-hydroxypropoxy)-carbazol ((S)-[18F]-fluoroethylcarazolol) was prepared by reaction of [18F]-fluoroethylamine with the corresponding (S)-epoxide and was evaluated in rats by studying its pharmacokinetics and its binding profile both in vitro and in vivo. In vitro, (S)-fluoroethylcarazolol binds preferentially to beta-adrenoceptors (pK(i)=9.3 for beta(1) and 9.4 for beta(2)) and has less affinity to 5HT(1A) and 5HT(1D) receptors (pK(i)=6.7 and 5.2). In vivo, standard uptake values (SUVs) up to 0.63+/-0.07 in cortical regions were found after 60 min. Metabolites (90%) appeared within 10 min in plasma, whereas, in brain 70-75% parent compound was found after 60 min. Clearance from plasma occurred within 5 min. Cerebral uptake could be blocked by 'cold' fluoroethylcarazolol in every region, except medulla. Uptake was also blocked by propranolol and pindolol, but not by WAY 100635. ICI 89406 hardly lowered [18F] levels in brain. ICI 118551 reduced uptake of [18F] in cerebellum (mainly beta(2)) by 30%. Specific binding (tissue minus medulla values) in various brain regions corresponded with those observed for [18F]-fluorocarazolol (r(2)=0.95) and with in vitro beta-adrenoceptor densities (r(2)=0.76). Autoradiography using phosphor images of (S)-[18F]-fluoroethylcarazolol in rat brain showed the characteristic binding pattern of beta-antagonists, while propranolol treatment resulted in low and homogenous uptake. Regional tissue minus medulla values corresponded with in vitro beta-adrenoceptor densities (r(2)=0.77). We conclude that (S)-[18F]-fluoroethylcarazolol is a high affinity ligand that binds specifically to cerebral beta-adrenoceptors in vivo and may be of use for beta-adrenoceptor imaging in the brain with PET.  相似文献   

15.
The purpose of this study was to develop 4-[18F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([18F]FITM, [18F]4) as a new PET ligand for imaging metabotropic glutamate receptor subtype 1 (mGluR1). [18F]4 was synthesized by [18F]fluorination of a novel nitro precursor 3 with [18F]KF in the presence of Kryptofix 222. At the end of synthesis, 429-936 MBq (n = 8) of [18F]4 was obtained with >99% radiochemical purity and 204-559 GBq/μmol specific activity starting from 6.7 to 13.0 GBq of [18F]F. The brain distribution of [18F]4 was determined by the in vitro and ex vivo autoradiography using rat brain sections. The in vitro and in vivo specific binding of [18F]4 to mGluR1 was detected in the cerebellum, thalamus, hippocampus, and striatum. These results suggest that [18F]4 is a promising PET ligand for the in vivo evaluation of mGluR1.  相似文献   

16.
Amino acid transport is an attractive target for oncologic imaging. Despite a high demand of cancer cells for cationic amino acids, their potential as PET probes remains unexplored. Arginine, in particular, is involved in a number of biosynthetic pathways that significantly influence carcinogenesis and tumor biology. Cationic amino acids are transported by several cationic transport systems including, ATB0,+ (SLC6A14), which is upregulated in certain human cancers including cervical, colorectal and estrogen receptor-positive breast cancer. In this work, we report the synthesis and preliminary biological evaluation of a new cationic analog of the clinically used PET tumor imaging agent O-(2-[18F]fluroethyl)-l-tyrosine ([18F]FET), namely O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET). Reference compound and precursor were prepared by multi-step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [18F]fluorination in 16–20 % decay-corrected yields with radiochemical purity >99 %. The new tracer showed good stability in vitro and in vivo. Cell uptake assays demonstrated that FEMAET and [18F]FEMAET accumulate in prostate cancer (PC-3) and small cell lung cancer cells (NCI-H69), with an energy-dependent mechanism. Small animal PET imaging with NCI-H69 xenograft-bearing mice revealed good tumor visualization comparable to [18F]FET and low brain uptake, indicating negligible transport across the blood–brain barrier. In conclusion, the non-natural cationic amino acid PET probe [18F]FEMAET accumulates in cancer cells in vitro and in vivo with possible involvement of ATB0,+.  相似文献   

17.
Synthesis of [18F]4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide ([18F]celecoxib), a selective COX-2 inhibitor, is achieved via a bromide to [18F]F- exchange reaction. Synthesis of the precursor for radiolabeling was achieved from 4'-methylacetophenone in four steps with 22% overall yield. Under non-radioactive conditions, fluorination was achieved using TBAF in DMSO at 135 degrees C in 80% yield. Synthesis of [18F]celecoxib was achieved using [18F]TBAF in DMSO at 135 degrees C in 10+/-2% yield (EOS) with >99% chemical and radiochemical purities. The specific activity was 120+/-40 mCi/micromol (EOB). [18F]celecoxib was found to be stable in ethanol, however, de[18F]fluorination (6.5%) was observed after 4 h in 10% ethanol-saline solution. Rodent PET studies show bone labeling indicating in vivo de[18F]fluorination of [18F]celecoxib. PET studies in baboon indicated a lower rate of de[18F]fluorination than rat and retention of radioactivity in brain regions consistent with the known distribution of COX-2. A radiolabeling method that can generate consistent high specific activity is needed for routine human use.  相似文献   

18.
Cerebral beta-adrenergic receptors (beta-ARs) are of interest in several disorders including Parkinson's disease, Alzheimer's disease and in particular major depressive disorder. Development of a positron emission tomography (PET) ligand for imaging beta-ARs would allow the quantification of these receptors in the living human brain so as to better understand both the pathophysiology of depression and how to improve treatment. Currently there are no radioligands suitable for this purpose. In an attempt to achieve this goal, we prepared [(18)F]-labeled (2S)-1-(1-fluoropropan-2-ylamino)-3-(2-cyclohexylphenoxy)propan-2-ol (fluoro-Exaprolol; (2S)-1). Radiolabeling with fluorine-18 was accomplished via preparation of a precursor containing a tosyl leaving group (10), and utilizes the 2-oxazolidinone group to simultaneously protect both the amine and hydroxy groups. The oxazolidinone was readily removed with lithium aluminum hydride following a nucleophilic [(18)F]-fluoride for tosyl displacement to prepare [(18)F]-(2S)-1 in 31% radiochemical yield (uncorrected for decay), with >98% radiochemical purity in <1h. The specific activity of the formulated product was 927 mCi/micromol and the log P (pH 7.4) was 2.97. Preliminary biological evaluations in conscious rats indicated that [(18)F]-(2S)-1 had good brain uptake for imaging (0.8-1.3% injected dose/gram (% ID/g) of wet tissue, 5 min post-injection of the radiotracer) with a slow washout (>0.5% ID/g at 60 min post-injection) in all brain regions. Pharmacological challenges indicate that the binding is largely non-specific, as administration of Propranolol, authentic (2S)-1, or WAY 100635 prior to injection of [(18)F]-(2S)-1 did not block uptake of the radiotracer. These results indicate that [(18)F]-(2S)-1 is not a suitable candidate for PET imaging of cerebral beta-ARs.  相似文献   

19.
目的:通过对黄皮酰胺全合成中间体(2R,3s,4S)-2-羟基-3-苯基-4-苯甲酰基-N-甲基-Y-内酰胺(化合物A)2位羟基的酯化,提高脂水分配系数(1gP),考察对谷丙转氨酶活性的影响。方法:以化合物A为原料,通过酰化反应合成(2R,3S,4S)-2-(N,N-二乙氨基)甲酰氧基-3-苯基-4-苯甲酰基-N-甲基-Y-内酰胺(化合物B),重点考察了摩尔比、反应温度、反应时间等条件对反应的影响。化合物B结构已经元素分析、红外光谱、质谱及核磁共振氢谱确证。结果:化合物A和酰化剂以摩尔比2:3,在160℃下反应1h,目标化合物B,收率78.42%。结论:本合成路线及具体反应方法,具有试剂廉价易得、反应条件温和、后处理简便等优点,是一种较为实用的合成方法。  相似文献   

20.
To prepare labeled precursors for biosynthetic studies, methods for the specific introduction of tritium and deuterium into the reducing and the terminal glucose unit of maltotriose were developed. Thus [6″-3H]- and (6″-2H)-maltotriose (17) and (18) were prepared via selective methoxytritylation, deprotection and subsequent modified Pfitzner-Moffatt oxidation, followed by reduction with sodium borotritiide or sodium borodeuteride, respectively. A simple two step procedure utilizing the Lobry de Bruyn/van Ekenstein transformation gave (2-2H)maltotriose (20).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号