首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Loop-mediated isothermal amplification (LAMP) assay is a powerful and innovative gene amplification technique that specifically amplifies the target gene under isothermal conditions with a high degree of sensitivity, rapidity and specificity. The major advantage of the LAMP assay is monitoring of amplified products without the requirement of any sophisticated equipment. In the present study a real time LAMP assay was employed for rapid and real time detection of Bacillus anthracis spores spiked in 0.1 g of soil and talcum powder ranging from 2 to 107 spores. DNA was isolated from spiked soil and talcum powder using PBS containing 1% Triton X-100, and heat treatment. Isolated DNA was used as template for LAMP and PCR. LAMP amplification was obtained in 60 min under isothermal condition at 63°C by employing a set of six primers targeting the pag gene of B. anthracis. The detection limit of LAMP assay in soil and talcum powder was found to be as low as 5 spores, compared to 103 spores and 104 spores by PCR in talcum powder and soil, respectively. The findings suggest that LAMP is a more rapid and sensitive assay than PCR for detecting anthrax spores, additionally the methodology to prepare DNA from spiked samples is simple, rapid and cost effective.  相似文献   

4.
5.
The aim of this study was to develop a method for the rapid detection of Gardnerella vaginalis, which is proposed to play a key role in the pathogenesis of bacterial vaginosis. Specific loop‐mediated isothermal amplification (LAMP) primers were designed and used to detect target DNA within 45 min under isothermal conditions. Comparative screening indicated that the LAMP assay is superior to PCR in terms of rapidity, and is equivalent in sensitivity and specificity. This LAMP assay can be used for rapid screening and detection of G. vaginalis in vaginal samples; the limit of detection is 10 fg DNA.
  相似文献   

6.
Aims: The current study was aimed to develop a loop‐mediated isothermal amplification (LAMP) combined with amplicon detection by chromatographic lateral flow dipstick (LFD) assay for rapid and specific detection of Vibrio parahaemolyticus. Methods and Results: Biotinylated LAMP amplicons were produced by a set of four designed primers that recognized specifically the V. parahaemolyticus thermolabile haemolysin (tlh) gene followed by hybridization with an FITC‐labelled probe and LFD detection. The optimized time and temperature conditions for the LAMP assay were 90 min at 65°C. The LAMP–LFD method accurately identified 28 isolates of V. parahaemolyticus but did not detect 24 non‐parahaemolyticus Vibrio isolates and 35 non‐Vibrio bacterial isolates. The sensitivity of LAMP–LFD for V. parahaemolyticus detection in pure cultures was 120 CFU ml?1. In the case of spiked shrimp samples without enrichment, the detection limit for V. parahaemolyticus was 1·8 × 103 CFU g?1 or equivalent to 3 CFU per reaction while that of conventional PCR was 30 CFU per reaction. Conclusions: The established LAMP–LFD assay targeting tlh gene was specific, rapid and sensitive for identification of V. parahaemolyticus. Significance and Impact of the Study: The developed LAMP–LFD assay provided a valuable tool for detection of V. parahaemolyticus and can be used effectively for identification of V. parahaemolyticus in contaminated food sample.  相似文献   

7.
Aims: The study describes the development of simple and rapid DNA extraction method in combination with loop‐mediated isothermal amplification (LAMP) to detect enterotoxigenic Staphylococcus aureus in food samples. Methods and Results: In this study, isolation of genomic DNA of enterotoxigenic Staph. aureus from spiked milk, milk burfi, khoa, sugarcane juice and boiled rice was carried out by boiling the isolated sample pellets for 10 min with 1% Triton X‐100. The isolated DNA was evaluated by polymerase chain reaction (PCR) and LAMP method. The LAMP was found to be 100 times more sensitive than PCR. The LAMP assay was very specific for Staph. aureus, and the presence of other contaminating bacterial DNAs and food matrix did not interfere or inhibit the LAMP assay. Conclusions: The template DNA extraction method developed in this study for food samples is simple, rapid and cost‐effective. LAMP was found to be less sensitive to matrix effect of food, compared to PCR. Significance and Impact of the Study: The method is suitable for direct detection of Staph. aureus without any enrichment in contaminated food samples and hence finds its application in food safety analysis, in permutation with LAMP.  相似文献   

8.
9.
Aims: To develop a rapid and simple system for detection of Bacillus anthracis using a loop‐mediated isothermal amplification (LAMP) method and determine the suitability of LAMP for rapid identification of B. anthracis infection. Methods and Results: A specific LAMP assay targeting unique gene sequences in the bacterial chromosome and two virulence plasmids, pXO1 and pXO2, was designed. With this assay, it was possible to detect more than 10 fg of bacterial DNA per reaction and obtain results within 30–40 min under isothermal conditions at 63°C. No cross‐reactivity was observed among Bacillus cereus group and other Bacillus species. Furthermore, in tests using blood specimens from mice inoculated intranasally with B. anthracis spores, the sensitivity of the LAMP assay following DNA extraction methods using a Qiagen DNeasy kit or boiling protocol was examined. Samples prepared by both methods showed almost equivalent sensitivities in LAMP assay. The detection limit was 3·6 CFU per test. Conclusions: The LAMP assay is a simple, rapid and sensitive method for detecting B. anthracis. Significance and Impact of the Study: The LAMP assay combined with boiling extraction could be used as a simple diagnostic method for identification of B. anthracis infection.  相似文献   

10.
Aim: The objective of this study is to develop a serovar‐specific loop‐mediated isothermal amplification (LAMP) method for sensitive, rapid, and inexpensive detection of Salmonella serovar Enteritidis under field conditions. Methods: A set of six specific primers was designed with Salmonella Enteritidis DNA as the target. LAMP conditions were optimized by incubating the target DNA with the Bst DNA polymerase large fragment in a simple water bath. The sensitivity and specificity of LAMP was then compared with those of fluorescent quantitative real‐time polymerase chain reaction (FQ‐PCR). Results: The results were as follows. (1) Serovar‐specific Salmonella Enteritidis DNA was amplified at 65°C in as early as 20 min in a water bath. (2) A colour change visible to the naked eye indicated a positive amplification reaction. (3) The detection limit of the LAMP assay was 4 copies μl?1; thus, the sensitivity and specificity of this assay is similar to those of the FQ‐PCR. Conclusions: LAMP is a high‐throughput detection technique with high sensitivity, specificity, and simplicity; these factors make it suitable for specifically detecting Salmonella Enteritidis under field conditions and in laboratory settings. Thus, LAMP eliminates the need for complicated equipment and technical training in the detection of this specific serovar. Significance and impact of the study: This is the first study involving the use of LAMP to detect Salmonella serovar‐specific DNA sequences. It is also the first to report an ideal method of distinguishing between Salmonella Enteritidis and other Salmonella under field conditions.  相似文献   

11.
Giardia lamblia is recognized as one of the most prevalent parasites in dogs. The present study aimed to establish a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of G. lamblia from dogs. The fecal samples were collected and prepared for microscopic analysis, and then the genomic DNA was extracted directly from purified cysts. The concentration of DNA samples of G. lamblia were diluted by 10-fold serially ranging from 10-1 to 10-5 ng/µl for LAMP and PCR assays. The LAMP assay allows the amplification to be finished within 60 min under isothermal conditions of 63℃ by employing 6 oligonucleotide primers designed based on G. lamblia elongation factor 1 alpha (EF1α) gene sequence. Our tests showed that the specific amplification products were obtained only with G. lamblia, while no amplification products were detected with DNA of other related protozoans. Sensitivity evaluation indicated that the LAMP assay was sensitive 10 times more than PCR. It is concluded that LAMP is a rapid, highly sensitive and specific DNA amplification technique for detection of G. lamblia, which has implications for effective control and prevention of giardiasis.  相似文献   

12.
Aims: The purpose of this study was to develop a loop‐mediated isothermal amplification (LAMP) method for the rapid, sensitive and simple detection of Vibrio alginolyticus in mariculture fish. Methods and Results: LAMP primers were designed by targeting the gyrB gene. With Bst DNA polymerase, the target DNA can be clearly amplified for 60 min at 64°C in a simple water bath. The detection sensitivity of the LAMP assay for the detection of V. alginolyticus is about 3·7 × 102 CFU ml?1 (3·7 CFU per reaction). LAMP products could be judged with agar gel or naked eye after the addition of SYBR Green I. There were no cross‐reactions with other bacterial strains indicating a high specificity of the LAMP. The LAMP method was applied to detect V. alginolyticus‐infected fish tissues effectively. Conclusions: The LAMP established in this study is a simple, sensitive, specific, inexpensive and rapid protocol for the detection of V. alginolyticus. Significance and Impact of the Study: This LAMP method provides an important diagnostic tool for the detection of V. alginolyticus infection both in the laboratory and field.  相似文献   

13.
14.
The objective of this study was to establish a loop-mediated isothermal amplification (LAMP) method for the detection of F5 fimbriae gene in Enterotoxigenic Escherichia coli. A set of four primers were designed based on the conservative sequence of coding F5 fimbriae. Temperature and time condition, specificity test, and sensitivity test were performed with the DNA of Escherichia coli (F5+). The results showed that the optimal reaction condition for LAMP was achieved at 61 °C for 45 min in a water bath. Ladder-like products were produced with those F5-positive samples by LAMP, while no product was generated with other negative samples. The assay of LAMP had a detection limit equivalent to 72 cfu/tube, which was more sensitive than PCR (7.2 × 102 cfu/tube). The agreement rate between LAMP and PCR was 100 % in detecting simulation samples. Thus, the LAMP assay may be a new method for rapid detection of F5 fimbriae gene of ETEC.  相似文献   

15.
Aim: To develop spa multiplex real‐time and conventional PCR assays to detect and differentiate between spaA, spaB and spaC genes within Erysipelothrix spp. Methods and Results: For evaluation of the assays, 28 Erysipelothrix spp. reference strains, 25 tissues from pigs inoculated with reference strains of serotypes 1, 2, 5, 10 or 18, and 15 diagnostic samples were used. SpaA was found to be present in Erysipelothrix rhusiopathiae serotypes 1a, 1b, 2, 5, 9, 12, 15, 16, 17, 23 and N; spaB was detected in E. rhusiopathiae serotypes 4, 6, 8, 11, 19 and 21 and spaC was detected in E. sp. strain 2 serotype 18. Spa‐related genes were not detected in E. tonsillarum strains (serotypes 3, 7, 10, 14, 20, 22, 24, 25, 26) or E. sp. strain 1 (serotype 13). With the spa multiplex real‐time PCR assay, it was also possible to further differentiate spaB into spaB1 (serotypes 4, 6, 8, 19 and 21) and spaB2 (serotype 11). Overall, spaA was detected in seven experimental tissue samples and six diagnostic tissue samples, and spaC in two experimental tissue samples. The detection limits were determined to be five colony‐forming units (CFU) per reaction for the spa multiplex real‐time PCR assay and 4000 CFU per reaction for the conventional PCR assay. Conclusions: Both spa PCR assays were specific and reproducible in the identification of spa types in Erysipelothrix spp. Significance and Impact of the Study: The described spa PCR assays may be useful tools for investigating spa prevalence among strains isolated from field tissues and to determine the role of the Spa proteins in vaccine protection and pathogenesis.  相似文献   

16.
Loop-mediated isothermal amplification (LAMP) was designed for detection of Listeria monocytogenes, which is an important food-borne kind of pathogenic bacteria causing human and animal disease. The primers set for the hlyA gene consist of six primers targeting eight regions on specific gene. The LAMP assay could be performed within 40 min at 65°C in a water bath. Amplification products were visualized by calcein and manganous ion and agarose gel electrophoresis. Sensitivity of the LAMP assay for detection of L. monocytogenes in pure cultures was 2.0 CFU per reaction. The LAMP assay was 100-fold higher sensitive than that of the conventional PCR assay. Taking this way, 60 chicken samples were investigated for L. monocytogenes. The accuracy of LAMP was shown to be 100% when compared to the “gold standard” culture-biotechnical, while the PCR assay failed to detect L. monocytogenes in two of the positive samples. It is shown that LAMP assay can be used as a sensitive, rapid, and simple detection tool for the detection of L. monocytogenes and will facilitate the surveillance for contamination of L. monocytogenes in food.  相似文献   

17.
18.
In this study, a loop-mediated isothermal amplification (LAMP) assay was established to detect Schistosoma japonicum DNA in faecal and serum samples of rabbits, and serum samples of humans infected with S. japonicum. This LAMP assay was based on the sequence of highly repetitive retrotransposon SjR2, and was able to detect 0.08 fg S. japonicum DNA, which is 104 times more sensitive than conventional PCR. The LAMP assay was also highly specific for S. japonicum and able to detect S. japonicum DNA in rabbit sera at 1 week p.i. Following administration of praziquantel, detection of S. japonicum DNA in rabbit sera became negative at 12 weeks post-treatment. These results demonstrated that LAMP was effective for early diagnosis of, and evaluation of therapy effectiveness for, S. japonicum infection. Both PCR and LAMP assays were then used to detect S. japonicum DNA in 30 serum samples from S. japonicum-infected patients and 20 serum samples from healthy persons. The percentage sensitivity of LAMP was 96.7%, whereas that of PCR was only 60%, indicating that LAMP was more sensitive than conventional PCR for clinical diagnosis of schistosomiasis cases in endemic areas. The established LAMP assay should provide a useful and practical tool for the routine diagnosis and therapeutic evaluation of human schistosomiasis.  相似文献   

19.
A loop-mediated isothermal amplification (LAMP) assay system was employed for detecting Bacillus anthracis spores in pure cultures as well as in various simulated powder samples. The specificity of the designed LAMP primer sets was validated by assaying 13 B. anthracis strains and 33 non-B. anthracis species. The detection limits of the LAMP assay were 10 spores/tube for pure cultures and 100 spores/2 mg powder for simulated powder samples. The results show that the LAMP protocol is a promising method for detecting B. anthracis.  相似文献   

20.
Sustainable disease management depends on the ability to monitor the development of fungicide resistance in pathogen populations. A point mutation resulting in an alteration (F200Y) at codon 200 of the target protein β‐tubulin leads to a moderate level of resistance to carbendazim in Botrytis cinerea. Although traditional methods remain a cornerstone in detection of fungicide resistance, molecular methods that do not require the isolation of pathogens, can detect the presence of resistance alleles at low frequencies, and require less time and labour than traditional methods. In this study, we present an efficient, rapid, and highly specific method for detecting the moderately carbendazim‐resistant isolates in B. cinerea based on loop‐mediated isothermal amplification (LAMP). By using specific LAMP primers, we detected the resistance‐conferring mutation underlying β‐tubulin F200Y. The concentrations of LAMP components and LAMP parameters were optimised, resulting in reaction temperatures and times of 61–65°C and 45 min, respectively. The feasibility of the LAMP assay was verified by assaying the diseased samples with artificial inoculation in the different hosts. The LAMP assay developed in the current study was specific, stable, repeatable and sensitive, and was successfully applied for detection of moderately carbendazim‐resistant isolates of B. cinerea in plant samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号