首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

2.
This work contributes to the development of a dynamic life cycle assessment (DLCA) methodology by providing a methodological framework to link a dynamic system modeling method with a time‐dependent impact assessment method. This three‐step methodology starts by modeling systems where flows are described by temporal distributions. Then, a temporally differentiated life cycle inventory (TDLCI) is calculated to present the environmental exchanges through time. Finally, time‐dependent characterization factors are applied to the TDLCI to evaluate climate‐change impacts through time. The implementation of this new framework is illustrated by comparing systems producing domestic hot water (DHW) over an 80‐year period. Electricity is used to heat water in the first system, whereas the second system uses a combination of solar energy and gas to heat an equivalent amount of DHW at the same temperature. This comparison shows that using a different temporal precision (i.e., monthly vs. annual) to describe process flows can reverse conclusions regarding which case has the best environmental performance. Results also show that considering the timing of greenhouse gas (GHG) emissions reduces the absolute values of carbon footprint in the short‐term when compared with results from the static life cycle assessment. This pragmatic framework for the implementation of time in DLCA studies is proposed to help in the development of the methodology. It is not yet a fully operational scheme, and efforts are still required before DLCA can become state of practice.  相似文献   

3.
The environmental impact of the water consumption of four typical crop rotations grown in Spain, including energy crops, was analyzed and compared against Spanish agricultural and natural reference situations. The life cycle assessment (LCA) methodology was used for the assessment of the potential environmental impact of blue water (withdrawal from water bodies) and green water (uptake of soil moisture) consumption. The latter has so far been disregarded in LCA. To account for green water, two approaches have been applied: the first accounts for the difference in green water demand of the crops and a reference situation. The second is a green water scarcity index, which measures the fraction of the soil‐water plant consumption to the available green water. Our results show that, if the aim is to minimize the environmental impacts of water consumption, the energy crop rotations assessed in this study were most suitable in basins in the northeast of Spain. In contrast, the energy crops grown in basins in the southeast of Spain were associated with the greatest environmental impacts. Further research into the integration of quantitative green water assessment in LCA is crucial in studies of systems with a high dependence on green water resources.  相似文献   

4.
A normalization step is widely exercised in life cycle assessment (LCA) studies in order to better understand the relative significance of impact category results. In the normalization stage, normalization references (NRs) are the characterized results of a reference system, typically a national or regional economy. Normalization is widely practiced in LCA‐based decision support and policy analysis (e.g., LCA cases in municipal solid waste treatment technologies, renewable energy technologies, and environmentally preferable purchasing programs, etc.). The compilation of NRs demands significant effort and time as well as an intimate knowledge of data availability and quality. Consequently only one set of published NRs is available for the United States, and has been adopted by various studies. In this study, the completeness of the previous NRs was evaluated and significant data gaps were identified. One of the reasons for the significant data gaps was that the toxic release inventory (TRI) data significantly underestimate the potential impact of toxic releases for some sectors. Also the previous NRs did not consider the soil emissions and nitrogen (N) and phosphorus (P) runoffs to water and chemical emissions to soils. Filling in these data gaps increased the magnitude of NRs for “human health cancer,” “human health noncancer,” “ecotoxicity,” and “eutrophication” significantly. Such significant changes can alter or even reverse the outcome of an LCA study. We applied the previous and updated NRs to conventional gasoline and corn ethanol LCAs. The results demonstrate that NRs play a decisive role in the interpretation of LCA results that use a normalization step.  相似文献   

5.
Life cycle impact of emissions, energy requirements, and exergetic losses are calculated for a novel process for producing titanium dioxide nanoparticles from an ilmenite feedstock. The Altairnano hydrochloride process analyzed is tailored for the production of nanoscale particles, unlike established commercial processes. The life cycle energy requirements for the production of these particles is compared with that of traditional building materials on a per unit mass basis. The environmental impact assessment and energy analysis results both emphasize the use of nonrenewable fossil fuels in the upstream life cycle. Exergy analysis shows fuel losses to be secondary to material losses, particularly in the mining of ilmenite ore. These analyses are based on the same inventory data. The main contributions of this work are to provide life cycle inventory of a nanomanufacturing process and reveal potential insights from exergy analysis that are not available from other methods.  相似文献   

6.
Sustainability assessment standards are currently being developed for a range of building products. This activity has been stimulated through the considerable success of the U.S. Green Building Council's (USGBC) LEED? standard. Transparent life cycle–based standards can guide manufacturers to design products that have reduced environmental impact. The use of a sustainability standard can certify performance and avoid green washing. In this article we present a logical framework for designing a sustainability assessment standard through the creation of tables that award points in the standard to be consistent with life cycle information. Certain minimum principles of consistency are articulated. In the case that the life cycle impact assessment method maps the life cycle inventory to impact through a linear weighting, two design approaches—impact category and activity substitution—are constructed to be consistent with these principles. The approach is illustrated in a case study of a partial redesign of a carpet sustainability assessment standard (NSF/ANSI‐140).  相似文献   

7.
The impact assessment methods Eco‐Indicator 99 (H), Stepwise2006, and ReCiPe2008 (H) are compared with respect to the relative and absolute importance that they assign to the different mid‐point impact categories. The comparison is done by a common monetary valuation of the three endpoints that are common to the three methods: human well‐being, nature, and resources. Land use, global warming, and respiratory inorganic pollutants together make up between 86% and 97% of the overall impacts compared in all three methods. The overall monetarized impacts amount to 30%, 28%, and 165% of the gross domestic product (GDP), respectively. Resource depletion, land use, and global warming explain 99.5% of the positive deviation of ReCiPe2008, relative to the other two methods. The main causes for these differences are investigated and discussed, pointing to possibly questionable calculations and assumptions, for example, regarding the nonsubstitutability of resources and the very long relaxation time for transformed forestland in the relatively new ReCiPe2008 method, which leads us to recommend users to be cautious and critical when interpreting the results. Sensitivity analysis is made for other cultural perspectives and normalization references.  相似文献   

8.
This article investigates how value choices in life cycle impact assessment can influence characterization factors (CFs) for human health (expressed as disability‐adjusted life years [DALYs]). The Cultural Theory is used to define sets of value choices in the calculation of CFs, reflecting the individualist, hierarchist, and egalitarian perspectives. CFs were calculated for interventions related to the following impact categories: water scarcity, tropospheric ozone formation, particulate matter formation, human toxicity, ionizing radiation, stratospheric ozone depletion, and climate change. With the Cultural Theory as a framework, we show that individualist, hierarchist, and egalitarian perspectives can lead to CFs that vary up to six orders of magnitude. For persistent substances, the choice in time horizon explains the differences among perspectives, whereas for nonpersistent substances, the choice in age weighting and discount rate of DALY and the type of effects or exposure routes account for differences in CFs. The calculated global impact varies by two orders of magnitude, depending on the perspective selected, and derives mainly from particulate matter formation and water scarcity for the individualist perspective and from climate change for the egalitarian perspective. Our results stress the importance of dealing with value choices in life cycle impact assessment and suggest further research for analyzing the practical consequences for life cycle assessment results.  相似文献   

9.
Goal, Scope, and Background The main goal of the study is a comprehensive life cycle assessment of kerosene produced in a refinery located in Thessaloniki (Greece) and used in a commercial jet aircraft. Methods The Eco-Indicator 95 weighting method is used for the purpose of this study. The Eco-Indicator is a method of aggregation (or, as described in ISO draft 14042, 'weighting through categories') that leads to a single score. In the Eco-indicator method, the weighing factor (We) applied to an environmental impact index (greenhouse effect, ozone depletion, etc.) stems from the 'main' damage caused by this environmental impact. Results and Discussion The dominant source of greenhouse gas emissions is from kerosene combustion in aircraft turbines during air transportation, which contributes 99.5% of the total CO2 emissions. The extraction and refinery process of crude oil contribute by around 0.22% to the GWP. This is a logical outcome considering that these processes are very energy intensive. Transportation of crude oil and kerosene have little or no contribution to this impact category. The main source of CFC-11 equivalent emissions is refining of crude oil. These emissions derive from emissions that result from electricity production that is used during the operation of the refinery. NOx emissions contribute the most to the acidification followed by SO2 emissions. The main source is the use process in a commercial jet aircraft, which contributes approximately 96.04% to the total equivalent emissions. The refinery process of crude oil contributes by 2.11% mainly by producing SO2 emissions. This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2. Transportation of crude oil by sea (0.76%) produces large amount of SO2 and NOx due to combustion of low quality liquid fuels (heavy fuel oil). High air emissions of NOx during kerosene combustion result in the high contribution of this subsystem to the eutrophication effect. Also, water emissions with high nitrous content during the refining and extraction of crude oil process have a big impact to the water eutrophication impact category. Conclusion The major environmental impact from the life cycle of kerosene is the acidification effect, followed by the greenhouse effect. The summer smog and eutrophication effect have much less severe effect. The main contributor is the combustion of kerosene to a commercial jet aircraft. Excluding the use phase, the refining process appears to be the most polluting process during kerosene's life cycle. This is due to the fact that the refining process is a very complicated energy intensive process that produces large amounts and variety of pollutant substances. Extraction and transportation of crude oil and kerosene equally contribute to the environmental impacts of the kerosene cycle, but at much lower level than the refining process. Recommendation and Perspective The study indicates a need for a more detailed analysis of the refining process which has a very high contribution to the total equivalent emissions of the acidification effect and to the total impact score of the system (excluding the combustion of kerosene). This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2.  相似文献   

10.
Goal, Scope and Background This paper discusses the merging of methodological aspects of two known methods into a hybrid on an application basis. Water shortages are imminent due to scarce supply and increasing demand in many parts of the world. In California, this is caused primarily by population growth. As readily available water is depleted, alternatives that may have larger energy and resource requirements and, therefore, environmental impacts must be considered. In order to develop a more environmentally responsible and sustainable water supply system, these environmental implications should be incorporated into planning decisions. Methods Comprehensive accounting for environmental effects requires life cycle assessment (LCA), a systematic account of resource use and environmental emissions caused by extracting raw materials, manufacturing, constructing, operating, maintaining, and decommissioning the water infrastructure. In this study, a hybrid LCA approach, combining elements of process-based and economic input-output-based LCA was used to compare three supply alternatives: importing, recycling, and desalinating water. For all three options, energy use and air emissions associated with energy generation, vehicle and equipment operation, and material production were quantified for life-cycle phases and water supply functions (supply, treatment, and distribution). The Water-Energy Sustainability Tool was developed to inform water planning decisions. It was used to evaluate the systems of a Northern and a Southern California water utility. Results and Discussion The results showed that for the two case study utilities desalination had 2–5 times larger energy demand and caused 2–18 times more emissions than importation or recycling, due primarily to the energy-intensity of the treatment process. The operation life-cycle phase created the most energy consumption with 56% to 90% for all sources and case studies. For each water source, a different life-cycle phase dominated energy consumption. For imported water, supply contributed 56% and 86% of the results for each case study; for desalination, treatment accounted for approximately 85%; for recycled water, distribution dominated with 61% and 74% of energy use. The study calculated external costs of air pollution from all three water supply systems. These costs are borne by society, but not paid by producers. The external costs were found to be 6% of desalinated water production costs for both case studies, 8% of imported water production costs in Southern California, and 1–2% for the recycled water systems and for the Northern California utility's imported water system. Conclusion Recycling water was found to be more energy intensive in Northern than in Southern California, but the results for imported water were similar. While the energy demand of water recycling was found to be larger than importation in Northern California, the two alternatives were competitive in Southern California. For all alternatives in both case studies, the energy consumed by system operation dominated the results, but maintenance was also found to be significant. Energy production was found to be the largest contributor in all water provision systems, followed by materials production. The assessment of external costs revealed that the environmental effects of energy and air emissions caused by infrastructure is measurable, and in some cases, significant relative to the economic cost of water. Recommendation and Perspective This paper advocates the necessity of LCA in water planning, and discusses the applicability of the described model to water utilities.  相似文献   

11.
Government agencies, companies, and other entities are using environmental assessments, like life cycle assessment (LCA), as an input to decision‐making processes. Communicating the esoteric results of an LCA to these decision makers can present challenges, and interpretation aids are commonly provided to increase understanding. One such method is normalizing results as a means of providing context for interpreting magnitudes of environmental impacts. Normalization is mostly carried out by relating the environmental impacts of a product (or process) under study to those of another product or a spatial reference area (e.g., the United States). This research is based on the idea that decision makers might also benefit from normalization that considers comparisons to their entity's (agency, company, organization, etc.) total impacts to provide additional meaning and aid in comprehension. Two hybrid normalization schemes have been developed, which include aspects of normalization to both spatially based and entity‐based impacts. These have been named entity‐overlaid and entity‐accentuated normalization, and the schemes allow for performance‐based planning or emphasizing environmental impact types that are most relevant to an entity's operational profile, respectively. A hypothetical case study is presented to demonstrate these schemes, which uses environmental data from a U.S. transportation agency as the basis for entity normalization factors. Results of this case study illustrate how entity‐related references may be developed, and how this additional information may enhance the presentation of LCA results using the hybrid normalization schemes.  相似文献   

12.
Life cycle assessment (LCA) is a widely accepted methodology to support decision‐making processes in which one compares alternatives, and that helps prevent shifting of environmental burdens along the value chain or among impact categories. According to regulation in the European Union (EU), the movement of waste needs to be reduced and, if unavoidable, the environmental gain from a specific waste treatment option requiring transport must be larger than the losses arising from transport. The EU explicitly recommends the use of LCA or life cycle thinking for the formulation of new waste management plans. In the last two revisions of the Industrial Waste Management Programme of Catalonia (PROGRIC), the use of a life cycle thinking approach to waste policy was mandated. In this article we explain the process developed to arrive at practical life cycle management (LCM) from what started as an LCA project. LCM principles we have labeled the “3/3” principle or the “good enough is best” principle were found to be essential to obtain simplified models that are easy to understand for legislators and industries, useful in waste management regulation, and, ultimately, feasible. In this article, we present the four models of options for the management of waste solvent to be addressed under Catalan industrial waste management regulation. All involved actors concluded that the models are sufficiently robust, are easy to apply, and accomplish the aim of limiting the transport of waste outside Catalonia, according to the principles of proximity and sufficiency.  相似文献   

13.
When software is used to facilitate life cycle assessments (LCAs), the implicit assumption is that the results obtained are not a function of the choice of software used. LCAs were done in both SimaPro and GaBi for simplified systems of creation and disposal of 1 kilogram each of four basic materials (aluminum, corrugated board, glass, and polyethylene terephthalate) to determine whether there were significant differences in the results. Data files and impact assessment methodologies (Impact 2002, ReCiPe, and TRACI 2) were ostensibly identical (although there were minor variations in the available ReCiPe version between the programs that were investigated). Differences in reported impacts of greater than 20% for at least one of the four materials were found for 9 of the 15 categories in Impact 2002+, 7 of the 18 categories in ReCiPe, and four of the nine categories in TRACI. In some cases, these differences resulted in changes in the relative rankings of the four materials. The causes of the differences for 14 combinations of materials and impact categories were examined by tracing the results back to the life cycle inventory data and the characterization factors in the life cycle impact assessment (LCIA) methods. In all cases examined, a difference in the characterization factors used by the two programs was the cause of the differing results. As a result, when these software programs are used to inform choices, the result can be different conclusions about relative environmental preference that are functions purely of the software implementation of LCIA methods, rather than of the underlying data.  相似文献   

14.
Continuous population growth is causing increased water contamination. Uneven distribution of water resources and periodic droughts have forced governments to seek new water sources: reclaimed and desalinated water. Wastewater recovery is a tool for better management of the water resources that are diverted from the natural water cycle to the anthropic one. The main objective of this work is to assess the stages of operation of a Spanish Mediterranean wastewater treatment plant to identify the stages with the highest environmental impact, to establish the environmental loads associated with wastewater reuse, and to evaluate alternative final destinations for wastewater. Tertiary treatment does not represent a significant increment in the impact of the total treatment at the plant. The impact of reclaiming 1 cubic meter (m3) of wastewater represents 0.16 kilograms of carbon dioxide per cubic meter (kg CO2/m3), compared to 0.83 kg CO2/m3 associated with basic wastewater treatment (primary, secondary, and sludge treatment). From a comparison of the alternatives for wastewater final destination, we observe that replacing potable water means a freshwater savings of 1.1 m3, whereas replacing desalinated water means important energy savings, reflected in all of the indicators. To ensure the availability of potable water to all of the population—especially in areas where water is scarce—governments should promote reusing wastewater under safe conditions as much as possible.  相似文献   

15.
Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries. This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.  相似文献   

16.
In view of recent studies of the historical development and current status of industrial symbiosis (IS), life cycle assessment (LCA) is proposed as a general framework for quantifying the environmental performance of by‐product exchange. Recent guidelines for LCA (International Reference Life Cycle Data System [ILCD] guidelines) are applied to answer the main research questions in the IS literature reviewed. A typology of five main research questions is proposed: (1) analysis, (2) improvement, and (3) expansion of existing systems; (4) design of new eco‐industrial parks, and (5) restructuring of circular economies. The LCA guidelines were found useful in framing the question and choosing an appropriate reference case for comparison. The selection of a correct reference case reduces the risk of overestimating the benefits of by‐product exchange. In the analysis of existing systems, environmentally extended input‐output analysis (EEIOA) can be used to streamline the analysis and provide an industry average baseline for comparison. However, when large‐scale changes are applied to the system, more sophisticated tools are necessary for assessment of the consequences, from market analysis to general equilibrium modeling and future scenario work. Such a rigorous application of systems analysis was not found in the current IS literature, but would benefit the field substantially, especially when the environmental impact of large‐scale economic changes is analyzed.  相似文献   

17.
The use of information and communication technology (ICT) is growing throughout society, and new products and solutions are developed at an increasing rate. To enable environmental assessment of specific ICT products and other products that rely on ICT in some way, a more complete, detailed, and up‐to‐date study based on real measurements is needed. To date, similar studies have not been readily available or fully comprehensive. This study assessed the overall operational electricity use and life‐cycle–based carbon footprint (CF) relating to ICT in Sweden, including activities not commonly addressed previously, such as shared data transport networks and data centers and manufacturing of network infrastructure. Specific, detailed inventory data are presented and used for assessment of the Internet Protocol core network, data transmission, operator activities, and access network. These specific data, in combination with secondary, more generic data for end‐user equipment, allow a comprehensive overall assessment. The majority of the ICT network CF is the result of end‐user equipment, mainly personal computers, followed by third‐party enterprise networks and data centers and then access networks. The parts closest to the user proved to be clearly responsible for the majority of the impact. The results are presented for Swedish ICT networks and for ICT networks in general based on a global average electricity mix.  相似文献   

18.
Practitioners of life cycle assessment (LCA) have recently turned their attention to social issues in the supply chain. The United Nations life cycle initiative's social LCA task force has completed its guidelines for social life cycle assessment of products, and awareness of managing upstream corporate social responsibility (CSR) issues has risen due to the growing popularity of LCA. This article explores one approach to assessing social issues in the supply chain—life cycle attribute assessment (LCAA). The approach was originally proposed by Gregory Norris in 2006, and we present here a case study. LCAA builds on the theoretical structure of environmental LCA to construct a supply chain model. Instead of calculating quantitative impacts, however, it asks the question “What percentage of my supply chain has attribute X?” X may represent a certification from a CSR body or a self‐defined attribute, such as “is locally produced.” We believe LCAA may serve as an aid to discussions of how current and popular CSR indicators may be integrated into a supply chain model. The case study demonstrates the structure of LCAA, which is very similar to that of traditional environmental LCA. A labor hours data set was developed as a satellite matrix to determine number of worker hours in a greenhouse tomato supply. Data from the Quebec tomato producer were used to analyze how the company performed on eight sample LCAA indicators, and conclusions were drawn about where the company should focus CSR efforts.  相似文献   

19.
A key requirement for those in industry and elsewhere who wish to reduce the environmental impact of a product is to develop priorities for action. Life cycle assessment (LCA) is increasingly used to identify such priorities but can be misleading. This article draws attention to two effects that can occur when the system boundary for a product LCA is not defined correctly. We illustrate the washing machine effect by showing that in separate life cycle studies of clothing, detergents, and washing machines, the use of energy is dominated by operation of the washing machine. All three studies prioritize the use phase for action, but in an aggregated study, double counting of the use-phase impact occurs. We demonstrate the inverse washing machine effect with an example related to energy used in transport. We show that some activities that are significant on a cumulative basis consistently fall outside the chosen system boundary for individual products. A consequence is that when LCA studies are used for prioritization, they are in danger of overemphasizing the use-phase impacts and overlooking the impacts from indirect activities. These effects, which are broadly understood by LCA developers, appear not to be understood properly by those who use LCA to direct priorities for action. Therefore, practitioners should be wary of using LCA for prioritizing action, and LCA guidance documents should reflect this caution.  相似文献   

20.
A dissolved air flotation (DAF) system upgrade was proposed for an urban paper mill to recycle effluent. To understand the influence of operating variables on the environmental impacts of greenhouse gas (GHG) emissions and water consumption, a dynamic supply chain model was linked with life cycle assessment (LCA) to produce an environmental inventory. Water is a critical natural resource, and understanding the environmental impacts of recycling water is paramount in continued development of sustainable supply chains involving water. The methodology used in this study bridged the gap between detailed process models and static LCA modeling so that operating variables beyond discrete scenario analysis could be investigated without creating unnecessarily complex models. The model performed well in evaluating environmental impacts. It was found that there was no single optimum operating regime for all environmental impacts. For a mill discharging 80 cubic meters of effluent per hour (m3/hour), GHGs could be minimized with a DAF capacity of 17.5 m3/hour, while water consumption could be minimized with a DAF capacity of 25 m3/hour, which allowed insight into where environmental trade‐offs would occur. The study shows that more complexity can be achieved in supply chain modeling without requiring a full technical model. It also illustrates the need to consider multiple environmental impacts and highlights the trade‐off of GHG emissions with water consumption in water recycling. The supply chain model used in this water treatment case study was able to identify the environmental trade‐offs from the operating variables selected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号