首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A Gram-negative, aerobic, motile rod strain, designated Ma-20T, was isolated from a pool of marine Spirulina platensis cultivation, Sanya, China, and was subjected to a polyphasic taxonomy study. Strain Ma-20T can grow in the presence of 0.5–11 % (w/v) NaCl, 10–43 °C and pH 6–10, and grew optimally at 30 °C, pH 7.5–9.0 in natural seawater medium. The polar lipids were composed of phosphatidylethanolamine, three unidentified phospholipids and three unidentified polar lipids. The respiratory quinone was ubiquinone 8 (Q-8) and the major fatty acids were C18:1ω6c/C18:1ω7c (summed feature 8, 32.84 %), C16:1ω6c/C16:1ω7c (summed feature 3, 30.76 %), C16:0 (13.54 %), C12:03-OH (4.63 %), and C12:0 (4.09 %). The DNA G+C content of strain Ma-20T was 58 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ma-20T belonging to Gammaproteobacteria, it shared 88.46–91.55 and 89.21–91.26 % 16S rRNA gene sequence similarity to the type strains in genus Hahella and Marinobacter, respectively. In addition to the large 16S rRNA gene sequence difference, Ma-20T can also be distinguished from the reference type strains Hahella ganghwensis FR1050T and Marinobacter hydrocarbonoclasticus sp. 17T by several phenotypic characteristics and chemotaxonomic properties. On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain Ma-20T is suggested to represent a novel species of a new genus in Gammaproteobacteria, for which the name Nonhongiella spirulinensis gen. nov., sp. nov. is proposed. The type strain is Ma-20T (=KCTC 32221T=LMG 27470T).  相似文献   

3.
A pink-pigmented, Gram negative, aerobic, facultatively methylotrophic bacterium, strain BL44T, was isolated from bamboo leaves and identified as a member of the genus Methylobacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed similarity values of 98.7–97.0 % with closely related type strains and showed highest similarity to Methylobacterium zatmanii DSM 5688T (98.7 %) and Methylobacterium thiocyanatum DSM 11490T (98.7 %). Methylotrophic metabolism in this strain was confirmed by PCR amplification and sequencing of the mxaF gene coding for the α-subunit of methanol dehydrogenase. Strain BL44T produced three known quorum sensing signal molecules with similar retention time to C8, C10 and C12-HSLs when characterized by GC–MS. The fatty acid profiles contained major amounts of C18:1 ω7c, iso-3OH C17:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), which supported the grouping of the isolate in the genus Methylobacterium. The DNA G+C content was 66.9 mol%. DNA relatedness of the strain BL44T to its most closely related strains ranged from 12–43.3 %. On the basis of the phenotypic, phylogenetic and DNA–DNA hybridization data, strain BL44T is assigned to a novel species of the genus Methylobacterium for which the name Methylobacterium pseudosasae sp. nov. is proposed (type strain BL44T = NBRC 105205T = ICMP 17622T).  相似文献   

4.
The novel, cream colored, Gram-staining-negative, rod-shaped, motile bacteria, designated strains AK15T and AK18, were isolated from sediment samples collected from Palk Bay, India. Both strains were positive for arginine dihydrolase, lysine decarboxylase, oxidase, nitrate reduction and methyl red test. The major fatty acids were C16:0, C18:1 ω7c, C16:1 ω7c and/or C16:1 ω6c and/or iso-C15:0 2-OH (summed feature 3). Polar lipids content of strains AK15T and AK18 were found to bephosphatidylethanolamine (PE), two unidentified phospholipids (PL1 and PL2) and three unidentified lipids (L1-L3). The 16S rRNA gene sequence analysis indicated strains AK15T and AK18 as the members of the genus Photobacterium and closely related to the type strain Photobacterium jeanii with pair-wise sequence similarity of 96.7%. DNA–DNA hybridization between strain AK15T and AK18 showed a relatedness of 87%. Based on data from the current polyphasic study, strains AK15T and AK18 are proposed as novel species of the genus Photobacterium, for which the name Photobacterium marinum sp. nov. is proposed. The type strain of Photobacterium marinum is AK15T (=MTCC 11066T = DSM 25368T).  相似文献   

5.
Two moderately halophilic, facultatively aerobic, motile bacteria with flagella, designated strains 10-C-3T and 30-C-3, were isolated from jeotgal, a traditional Korean fermented seafood. Cells of the strains were observed to be ovoid-rods showing catalase- and oxidase-positive reactions and production of creamy-pink pigments. Growth of strain 10-C-3T was observed at 15–35 °C (optimum, 25–30 °C), at pH 5.5–9.0 (optimum, pH 7.0–7.5), and in the presence of 3–15 % (w/v) salts (optimum: 5–10 %). The two strains were found to contain C18:1 ω7c, C16:0, summed feature 3 (as defined by the MIDI system, comprising C16:1 ω7c and/or C16:1 ω6c), and C12:0 3-OH as the major cellular fatty acids. The G+C contents of the genomic DNA of strains 10-C-3T and 30-C-3 were determined to be 63.2 and 63.1 mol%, respectively and the respiratory quinone detected was ubiquinone 9 (Q-9) only. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains 10-C-3Tand 30-C-3 formed a distinct phyletic lineage within the genus Halomonas and are most closely related to Halomonas fontilapidosi 5CRT with 95.2 % of 16S rRNA sequence similarity. Strains 10-C-3Tand 30-C-3 shared 99.2 % of 16S rRNA gene sequence similarity and their DNA–DNA relatedness value was 96.6 ± 0.9 %. On the basis of phenotypic, chemotaxonomic and molecular features, strains 10-C-3Tand 30-C-3 represent a novel species of the genus Halomonas, for which the name Halomonas cibimaris sp. nov. is proposed. The type strain is 10-C-3T (= KACC 14932T = JCM 16914T).  相似文献   

6.
A novel Gram-negative, motile, rod-shaped, facultative anaerobic bacterial strain, KMK6T, was isolated from soil contaminated with textile dyes from an industrial estate located at Ichalkaranji, Maharashtra, India, and its taxonomical position was established by using a polyphasic approach. The major cellular fatty acids included C17:1ω8c, summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH), C17:0, C16:0, and C18:1ω7c. The DNA G+C content of strain KMK6T was 48.8 mol %. 16S rRNA gene sequence analysis confirmed its placement in the genus Alishewanella, and exhibited sequence similarity levels of below 97 % to the type strains of validly published Alishewanella species. On the basis of genotypic and phenotypic evidence, strains KMK6T is considered to be a novel species of the genus Alishewanella, for which we propose that strain KMK6T (=NCIM 5295T =BCRC 17848T) is assigned to a novel species, Alishewanella solinquinati sp. nov.  相似文献   

7.
Strain NHI-8T was isolated from a forest soil sample, collected in South Korea, by using a modified culture method. Comparative analysis of its nearly full-length 16S rRNA gene sequence showed that strain NHI-8T belongs to the genus Mesorhizobium and to be closely related to Mesorhizobium chacoense PR5T (97.32 %). The levels of DNA–DNA relatedness between strain NHI-8T and reference type strains of the genus Mesorhizobium were 32.28–53.65 %. SDS-PAGE of total soluble proteins and the sequences of the housekeeping genes recA, glnII, and atpD were also used to support the clade grouping in rhizobia. The new strain contained summed feature 8 (57.0 %), cyclo-C19:0ω8c (17.3 %), and C18:0 (11.0 %) as the major fatty acids, as in genus Mesorhizobium. The strain contained cardiolipin, phosphatidylglycerol, ornithine-containing lipid, phosphatidylethanolamine, phosphatidyl-N-dimethylethanolamine, and phosphatidylcholine. Morphological and physiological analyses were performed to compare the characteristics of our strain with those of the reference type strains. Based on the results, strain NHI-8T was determined to represent a novel member of the genus Mesorhizobium, and the name Mesorhizobium soli is proposed. The type strain is NHI-8T (=KEMB 9005-153T = KACC 17916T = JCM 19897T).  相似文献   

8.
Two strains (JC17T and JC19a) of orange pigmented bacteria were isolated from an estuarine sample. Cells of both the strains were Gram-negative coccobacilli, non-motile, non-spore forming and strictly aerobic. Chemo-organoheterotrophy was the growth mode for both strains and was possible on a wide range of organic compounds. Strains were non-hemolytic and contained low levels of BChl-a and carotenoids. The fatty acids (>1.0%) comprised C18:1ω7c, C16:1ω7c/iso-C15:02OH, C16:0, C16:0 3-OH, C18:12OH, C16:1ω5c, and C19:0 cycloω8c. The genomic DNA G+C content of strain JC17T was 66.2 mol%. A phylogenetic tree based on 16 S rRNA gene sequence analysis showed that strains JC17T and JC19a had the highest similarity to members of the genus Roseomonas and were closely related to Roseomonas cervicalis CIP104027T (96.4%) and Roseomonas ludipueritiae CIP107418T (96.3%) of the family Acetobacteraceae within the class Alphaproteobacteria. Strains JC17T and JC19a shared 100% 16 S rRNA gene sequence similarity, were phenotypically (morphological, physiological, biochemical characters) identical and had closely related genomes (85% DDH). Based on polyphasic taxonomic data, strain JC17T is classified as a novel species of the genus Roseomonas for which the name Roseomonas aestuarii sp. nov. is proposed. The type strain is JC17T (=CCUG 57456T =KCTC 22692T =NBRC105654T).  相似文献   

9.
A Gram-negative, non-mobile, polar single flagellum, rod-shaped bacterium WZBFD3-5A2T was isolated from a wheat soil subjected to herbicides for several years. Cells of strain WZBFD3-5A2T grow optimally on Luria-Bertani agar medium at 30?°C in the presence of 0–4.0?% (w/v) NaCl and pH 8.0. 16S rRNA gene sequence analysis revealed that strain WZBFD3-5A2T belongs to the genus Pseudomonas. Physiological and biochemical tests supported the phylogenetic affiliation. Strain WZBFD3-5A2T is closely related to Pseudomonas nitroreducens IAM1439T, sharing 99.7?% sequence similarity. DNA–DNA hybridization experiments between the two strains showed only moderate reassociation similarity (33.92?±?1.0?%). The DNA G+C content is 62.0?mol%. The predominant respiratory quinine is Q-9. The major cellular fatty acids present are C16:0 (28.55?%), C16:1ω6c or C16:1ω7c (20.94?%), C18:1ω7c (17.21?%) and C18:0 (13.73?%). The isolate is distinguishable from other related members of the genus Pseudomonas on the basis of phenotypic and biochemical characteristics. From the genotypic, chemotaxonomic and phenotypic data, it is evident that strain WZBFD3-5A2T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas nitritereducens sp. nov. is proposed. The type strain is WZBFD3-5A2T (=CGMCC 1.10702T?=?LMG 25966T).  相似文献   

10.
Two strains of Rhizobia isolated from sewage collected from the Chinese Baijiu distillery were characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains W15T and W16 were grouped as a separate clade closely related to Rhizobium daejeonense L61T (98.6%). Multilocus sequence analysis (MLSA) with three housekeeping genes (recA, glnII and rpoA) also showed that strains W15T and W16 belonged to the genus Rhizobium. Average nucleotide identity and digital DNA–DNA hybridization values between genome sequences of strain W15T and the closely related species ranged from 77.0% to 87.8% and from 23.9% to 30.9%. The DNA G + C content of strain W15T was 61.6 mol%. Strain W15T contained Q-10 as the major ubiquinone and the dominant fatty acids were summed feature 8 (C 18:1ω7c and/or C 18:1ω6c; 73.1%) and C18:0 (7.6%). The main polar lipids are phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. On the basis of the evidences presented in this study, strains W15T and W16 represents a novel species of the genus Rhizobium, for which the name Rhizobium cremeum sp. nov. is proposed. The type strain is W15T (= CGMCC 1.18731T = KACC 22344T).  相似文献   

11.
Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).  相似文献   

12.
Two newly isolated halotolerant obligately methylotrophic bacteria (strains C2T and SK12T) with the serine pathway of C1 assimilation are described. The isolates are strictly aerobic, Gram negative, asporogenous, non-motile rods, forming rosettes, multiplying by binary fission. Mesophilic and neutrophilic, accumulate intracellularly compatible solute ectoine and poly-β-hydroxybutyrate. The novel strains are able to grow at 0 up to 16% NaCl (w/v), optimally at 3–5% NaCl. The major cellular fatty acids are C18:1ω7c and C19:0cyc and the prevailing quinone is Q-10. The predominant phospholipids are phosphatidylcholine, phosphatidylglycerol, phosphatidyldimethylethanolamine and phosphatidylethanolamine. Assimilate NH4+ by glutamate dehydrogenase and via the glutamate cycle (glutamine synthetase and glutamate synthase). The DNA G + C contents of strains C2T and SK12T are 60.9 and 60.5 mol% (Tm), respectively. 16S rRNA gene sequence similarity between the two new isolates are 99% but below 94% with other members of the Alphaproteobacteria thus indicating that they can be assigned to a novel genus Methyloligella. Rather low level of DNA–DNA relatedness (53%) between the strains C2T and SK12T indicates that they represent two separate species of the new genus, for which the names Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov. are proposed. The type strain of Methyloligella halotolerans is C2T (=VKM B-2706T = CCUG 61687T = DSM 25045T) and the type strain of Methyloligella solikamskensis is SK12T (=VKM B-2707T = CCUG 61697T = DSM 25212T).  相似文献   

13.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

14.
A Gram-negative, strictly aerobic, non-motile, non-spore-forming and rod-shaped bacterial strain designated KHI67T was isolated from sediment of the Gapcheon River in South Korea and its taxonomic position was investigated by using a polyphasic approach. Strain KHI67T was observed to grow optimally at 25–30 °C and at pH 7.0 on nutrient and R2A agar. On the basis of 16S rRNA gene sequence similarity, strain KHI67T was shown to belong to the family Sphingomonadaceae and was related to Sphingomonas faeni MA-olkiT (97.6 % sequence similarity), Sphingomonas aerolata NW12T (97.5 %) and Sphingomonas aurantiaca MA101bT (97.3 %). The G + C content of the genomic DNA was determined to be 65.6 %. The major ubiquinone was found to be Q-10, the major polyamine was identified as homospermidine and the major fatty acids identified were summed feature 8 (comprising C18:1 ω7c/ω6c; 37.0 %), C16:0 (13.0 %), summed feature 3 (comprising C16:1 ω7c/C16:1 ω6c; 12.8 %) and C14:0 2OH (9.3 %). DNA and chemotaxonomic data supported the affiliation of strain KHI67T to the genus Sphingomonas. The DNA–DNA relatedness values between strain KHI67T and its closest phylogenetic neighbours were below 15 %. Strain KHI67T could be differentiated genotypically and phenotypically from the recognised species of the genus Sphingomonas. The isolate therefore represents a novel species, for which the name Sphingomonas ginsenosidivorax sp. nov. is proposed, with the type strain KHI67T (=KACC 14951T = JCM 17076T = LMG 25801T).  相似文献   

15.
The taxonomic status of a moderately halophilic bacterium, strain N4T, isolated from soil of a chicken farm in China was determined. It was Gram-negative, non-spore-forming, motile, and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequence indicated that this strain belonged to the genus Salinicola, as it showed the highest sequence similarities to Salinicola salaries M27T (98.3 %), Salinicola socius SMB35T (98.1 %), and Salinicola halophilus CG4.1T (98.1 %). The major cellular fatty acids were C16:0 (25.6 %), C18:1ω7c (35.0 %), and C19:0 cyclo ω8c (11.9 %), which are properties shared by members of the genus Salinicola. The DNA G+C content of strain N4T was 69.1 mol %. The level of DNA–DNA relatedness between strain N4T and the other three type strains of the genus of Salinicola salaries M27T, Salinicola socius SMB35T, and Salinicola halophilus CG4.1T were 34.3, 28.7, and 26.9 %, respectively. Based on the results of phenotypic, chemotaxonomic, DNA–DNA relatedness, and phylogenetic analysis, strain N4T should be classified as a novel species of the genus Salinicola, for which the name Salinicola zeshunii sp. nov. is proposed, with strain N4T (=KACC 16602T = CCTCC AB 2012912T) as the type strain.  相似文献   

16.
Three novel bacterial strains (UCM-2T, UCM-G28T, and UCM-G35T) were obtained while isolating soil bacteria for the development of antibiotics. Cells of these strains were Gram-negative, non-spore forming, motile by means of a single flagellum, and rod shaped. In all strains, the predominant isoprenoid quinone was ubiquinone-8 (Q-8). Cells contained C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c and/or C18:1ω6c), and C17:0 cyclo as the major fatty acids, and C10:0 3-OH as the major hydroxy fatty acid. The polar lipid profiles of the three novel strains were dominated by diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The genomic DNA G + C contents of strains UCM-2T, UCM-G28T, and UCMG35T were 67.5, 65.9, and 66.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA sequences showed that strain UCM-2T was most closely related to Variovorax soli NBRC 106424T, whereas strains UCM-G28T and UCM-G35T were most similar to Variovorax ginsengisoli Gsoil 3165T. Values indicating DNA-DNA hybridization between the novel isolates and closely related species in the genus Variovorax were lower than the 70% cut-off point. These phenotypic, chemotaxonomic, and phylogenetic data indicate that the three isolates should be classified as new members of the genus Variovorax, for which the names Variovorax ureilyticus sp. nov., Variovorax rhizosphaerae sp. nov., and Variovorax robiniae sp. nov. are proposed. The type strains are UCM-2T (= KACC 18899T = NBRC 112306T), UCMG28T (= KACC 18900T = NBRC 112307T), and UCM-G35T (= KACC 18901T = NBRC 112308T), respectively.  相似文献   

17.
Novel orange-pigmented, Gram-negative, rod-shaped, non-motile bacteria, designated strains NIO-S3T and NIO-S4, were isolated from a water sample collected from Cochin back waters, Thanneermukkom and Arookutty, Kerala, India. Both strains were positive for oxidase and catalase activities, and hydrolyzed gelatin and Tween 40. The predominant fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0 3OH, C16:1ω7c/C16:1ω6c (summed feature 3) and iso-C17:1ω9c/C16:0 10-methyl (summed feature 9), whereas MK-7 was the major respiratory quinone, and phosphatidylethanolamine, two unidentified phospholipids and one unidentified lipid were the only polar lipids. The DNA G+C content of the two strains was 43.7 and 43.6 mol%, respectively. The 16S rRNA gene sequence analysis indicated that they were members of the genus Algoriphagus and closely related to Algoriphagus olei CC-Hsuan-617T, Algoriphagus aquatilis A8-7T, Algoriphagus aquaeductus LMG 24398T and Algoriphagus mannitolivorans DSM 15301T, with pairwise sequence similarities of 96.8, 96.6, 96.2 and 96.2%, respectively. DNA–DNA hybridization between strains NIO-S3T and NIO-S4 showed a relatedness of 89%. Based on data from the current polyphasic study, the strains are proposed as a novel species of the genus Algoriphagus, for which the name Algoriphagus shivajiensis sp. nov. is proposed. The type strain of A. shivajiensis is NIO-S3T (=JCM 17885T = MTCC 11066T).  相似文献   

18.
A Gram-negative, aerobic, non-motile, dark brown-coloured and rod-shaped bacterial strain, designated G-MB1T, was isolated from a tidal flat sediment of the South Sea, South Korea. Strain G-MB1T was found to grow optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain G-MB1T fell within the clade comprising Thalassomonas species, clustering with the type strains of Thalassomonas agarivorans, Thalassomonas loyana, Thalassomonas ganghwensis and Thalassomonas agariperforans, with which it exhibited 16S rRNA gene sequence similarity values of 96.0–96.9 %. The 16S rRNA gene sequence similarity values between strain G-MB1T and the type strains of the other Thalassomonas species were 94.6–95.1 %. Strain G-MB1T was found to contain Q-8 as the predominant ubiquinone and C16:0, C17:1 ω8c, C16:1 ω9c, C12:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) as the major fatty acids. The major polar lipids of strain G-MB1T were phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminolipid. The DNA G+C content of strain G-MB1T was determined to be 42.4 mol%. Differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain G-MB1T is separated from other Thalassomonas species. On the basis of the data presented, strain G-MB1T is considered to represent a novel species of the genus Thalassomonas, for which the name Thalassomonas fusca sp. nov. is proposed. The type strain is G-MB1T (=KCTC 32499T = NBRC 109830T).  相似文献   

19.
A Gram-negative, aerobic, non-motile bacterial strain hun6T isolated from the polluted soil near a chemical factory in northern Nanjing, China was investigated to clarify its taxonomic position. Growth of strain hun6T occurred between 10 and 45 °C (optimum, 30 °C) and between pH 6.0 and 8.0 (optimum, pH 7.0). No growth occurred at NaCl concentrations greater than 5 % (w/v). The 16S rRNA gene sequence analysis indicated that strain hun6T belongs to the genus Aquamicrobium. The sequence similarities of strain hun6T to other type strains of Aquamicrobium genus were all below 98.5 %. The presence of ubiquinone-10, the predominant fatty acid summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C19:0 cyclo ω8c, a polar lipid pattern with phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine and phophatidylmonomethylethanoamine were in accord with the characteristics of the genus Aquamicrobium. The G+C content of the genomic DNA was determined to be 63.5 mol%. The results of DNA–DNA hybridization, physiological and biochemical tests and chemotaxonomic properties allowed genotypic and phenotypic differentiation of strain hun6T from all known Aquamicrobium species. Therefore, strain hun6T can be assigned to a new species of this genus for which the name Aquamicrobium terrae sp. nov. is proposed. The type strain is hun6T (= CICC 10733T = DSM 27865T).  相似文献   

20.
Three Gram-stain negative, aerobic, non-motile, non-spore-forming, rod-shaped bacterial strains, PYM5-11T, RaM5-2 and PYM5-8, were isolated from the drinking water supply system of Budapest (Hungary) and their taxonomic positions were investigated by a polyphasic approach. All three strains grew optimally at 20-28 °C and pH 5-7 without NaCl. The G+C content of the DNA of the type strain was 65.4 mol%. On the basis of 16S rRNA gene sequence analysis, the isolates showed 94.5-94.9% sequence similarity to the type strain of Dokdonella koreensis and a similarity of 93.0-94.1% to the species of the genera Aquimonas and Arenimonas. The major isoprenoid quinone of the strains was ubiquinone Q-8. The predominant fatty acids were iso-C15:0, iso-C17:1ω9c, C16:1ω7c, and C16:0. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine, as well as several unidentified aminolipids and phospholipids were present. The 16S rRNA gene sequence analysis, the predominant fatty acids, the polar lipid composition, RiboPrint patterns, physiological and biochemical characteristics showed that the three strains were related but distinct from the type strains of the four recognized species of the genus Dokdonella, and indicated that the strains represented a new genus within the Gammaproteobacteria. The strain PYM5-11 (=DSM 21667T=NCAIM B 02337T) is proposed as the type strain of a new genus and species, designated as Tahibacter aquaticus gen. nov., sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号