首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
Aims: To evaluate the antimicrobial properties of flavonoid‐rich fractions derived from natural and blanched almond skins, the latter being a by‐product from the almond processing industry. Methods and Results: Almond skin extracts were tested against Gram‐negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Serratia marcescens), Gram‐positive bacteria (Listeria monocytogenes, Enterococcus hirae, Staphylococcus aureus, Enterococcus durans) and the yeast Candida albicans. Almond skin fractions were found to have antimicrobial activity against L. monocytogenes and Staph. aureus in the range 250–500 μg ml?1, natural skins showing antimicrobial potential against the Gram‐negative Salm. enterica. The interactions between three almond skin flavonoids were also evaluated with isobolograms. Conclusions: Pairwise combinations of protocatechuic acid, naringenin and epicatechin showed both synergistic and indifferent interactions against Salm. enterica and Staph. aureus. Antagonism was observed against L. monocytogenes with all combinations tested. Further studies need to be performed to understand the mechanisms responsible for these interactions. Significance and Impact of the Study: Almond skins are a potential source of natural antimicrobials.  相似文献   

2.
3.
Aims: The efficacy of a commercial seed washer and 1 and 3% peroxyacetic acid or 20 000 ppm calcium hypochlorite for reducing Salmonella on alfalfa seeds was investigated. Methods and Results: Alfalfa seeds were inoculated with Salmonella Stanley to achieve c. 5 log CFU g?1. Seeds were then treated with 1 or 3% peroxyacetic acid or 20 000 ppm calcium hypochlorite for 15 min in a commercial seed washer that uses air to enhance contact of the sanitizer with the seed. Experiments were also conducted using industry and laboratory methods. An c. 1‐log reduction in number of Salm. Stanley was demonstrated regardless of the chemical treatment or method of treatment. Although this 1‐log reduction was significant (P < 0·05), differences among the treatments were not significant. Treating the seed with 1 and 3% peroxyacetic acid resulted in similar Salm. Stanley reductions of 1·77 and 1·34 log, respectively, not being statistically significant (P > 0·05). Conclusions: These results suggest that under conditions tested, 1 or 3% peroxyacetic acid solutions are equally effective as 20 000 ppm of Ca(OCl)2 in the reduction of Salm. Stanley on alfalfa seed when used in conjunction with a commercial seed washer. Significance and Impact of the Study: A 1% peroxyacetic acid solution could potentially be used in place of 20 000 ppm of Ca(OCl)2 for treatment of seeds used for sprouting. The commercial seed washer did not enhance removal of Salm. Stanley from alfalfa seeds, but did facilitate removal of excess soil from seeds.  相似文献   

4.
The consumption of herbal teas is an increasing phenomenon among tea consumers globally. Some of these herbal teas are not pre-treated to reduce their microbial load before consumption, and thus constitute a health risk to consumers. In this study, the effect of steam pasteurization, at >99 °C for 2.5 min, on the microbial load of Lippia multiflora herbal tea leaves was evaluated. Microbial enumeration was conducted on potato dextrose agar, plate count agar, violet red bile agar, yeast peptone dextrose agar, and DeMan-Rogosa-Sharpe agar. Morphologically distinct colonies were isolated, sub-cultured and their Gram reaction recorded. These bacteria were identified to the species level using 16S ribosomal DNA sequence data. Most of the bacteria identified belonged to the genus Bacillus. One species each from the genera Pantoea and Kocuria was also identified, but only the Bacillus species survived the steam pasteurization treatment. Coliform bacteria detected prior to pasteurization were not detected after the steam treatment. Steam pasteurization reduced the microbial load from 104 to 10c.f.u.g−1and it is potentially an effective method to treat L. multiflora herbal teas prior to consumption. It is important to note that the steam treatment should complement good agricultural and hygienic practices rather than replace them, as some bacteria can survive this treatment.  相似文献   

5.
Aims: To establish the fate of Escherichia coli O157:H7 and Salmonella Typhimurium in manure and manure‐amended agricultural soils under tropical conditions in Sub‐Saharan Africa. Methods and Results: Survival of nonvirulent Ecoli O157:H7 and Salm. Typhimurium at 4 and 7 log CFU g?1 in manure and manure‐amended soil maintained at ≥80% r.h. or exposed to exclusive field or screen house conditions was determined in the Central Agro‐Ecological Zone of Uganda. Maintaining the matrices at high moisture level promoted the persistence of high‐density inocula and enhanced the decline of low‐density inocula in the screen house, but moisture condition did not affect survival in the field. The large majority of the survival kinetics displayed complex patterns corresponding to the Double Weibull model. The two enteric bacteria survived longer in manure‐amended soil than in manure. The 7 log CFU g?1Ecoli O157:H7 and Salm. Typhimurium survived for 49–84 and 63–98 days, while at 4 log CFU g?1, persistence was 21–28 and 35–42 days, respectively. Conclusions: Under tropical conditions, Ecoli O157:H7 and Salm. Typhimurium persisted for 4 and 6 weeks at low inoculum density and for 12 and 14 weeks at high inoculum density, respectively. Significance and Impact of the Study: Persistence in the tropics was (i) mostly shorter than previously observed in temperate regions thus suggesting that biophysical conditions in the tropics might be more detrimental to enteric bacteria than in temperate environments; (ii) inconsistent with published data isothermally determined previously hence indicating the irrelevance of single point isothermal data to estimate survival under dynamic temperature conditions.  相似文献   

6.
In 2000 to 2001, 2003 to 2004, and 2005 to 2006, three outbreaks of Salmonella enterica serovar Enteritidis were linked with the consumption of raw almonds. The S. Enteritidis strains from these outbreaks had rare phage types (PT), PT30 and PT9c. Clinical and environmental S. Enteritidis strains were subjected to pulsed-field gel electrophoresis (PFGE), multilocus variable-number tandem repeat analysis (MLVA), and DNA microarray-based comparative genomic indexing (CGI) to evaluate their genetic relatedness. All three methods differentiated these S. Enteritidis strains in a manner that correlated with PT. The CGI analysis confirmed that the majority of the differences between the S. Enteritidis PT9c and PT30 strains corresponded to bacteriophage-related genes present in the sequenced genomes of S. Enteritidis PT4 and S. enterica serovar Typhimurium LT2. However, PFGE, MLVA, and CGI failed to discriminate between S. Enteritidis PT30 strains related to outbreaks from unrelated clinical strains or between strains separated by up to 5 years. However, metabolic fingerprinting demonstrated that S. Enteritidis PT4, PT8, PT13a, and clinical PT30 strains metabolized l-aspartic acid, l-glutamic acid, l-proline, l-alanine, and d-alanine amino acids more efficiently than S. Enteritidis PT30 strains isolated from orchards. These data indicate that S. Enteritidis PT9c and 30 strains are highly related genetically and that PT30 orchard strains differ from clinical PT30 strains metabolically, possibly due to fitness adaptations.Salmonella enterica is one of the major causes of bacterial food-borne illness worldwide. Many serovars of S. enterica serovar Enteritidis emerged as serious problems in the human food supply during the 1980s, and these cases were associated mostly with undercooked eggs and poultry (26). The phage typing of S. Enteritidis strains associated with egg-associated outbreaks had indicated that phage types 8 (PT8) and PT13a were the most common PTs in the United States (12), and PT4 was the most common in Europe (22). Through education and quality improvements, the incidence of S. Enteritidis due to egg products has decreased in the United States (18). However, several recent outbreaks have identified new sources for S. Enteritidis, specifically mung bean sprouts, tomatoes, and raw whole almonds (3, 13, 31).At the time of the 2001 outbreak, almonds and other low-moisture foods were considered an unlikely source of food-borne illness. Almonds are California''s major tree nut crop and have ranked first in California agricultural exports for many years, accounting for 60% of world production in 2000 (14) and 80% in 2008 (http://www.almondboard.com/AboutTheAlmondBoard/Documents/2008-Almond-Board-Almanac.pdf). However, no outbreaks associated with almonds had been reported before 2001. In the spring of 2001, Canadian health officials identified a link between illnesses caused by S. Enteritidis and the consumption of raw almonds (6). Outbreak-related cases were identified from November 2001 to July 2001 in several provinces across Canada and in several regions in the United States (13). During the traceback investigation, almond retailers, processors, and growers were identified, and S. Enteritidis PT30 was cultured from almond samples, a huller/sheller facility, and environmental samples from the orchards (30). The ability to identify the contaminated food source for this outbreak was aided significantly by the previously rare occurrence of S. Enteritidis PT30. S. Enteritidis PT30 continued to be isolated from one of the outbreak-associated orchards during a 5-year period, suggesting that this organism was highly fit for persistence in this environment (30).In 2004, another rare S. Enteritidis PT (PT9c) was linked to a second outbreak associated with raw almonds. Similarly to the first outbreak, both phage typing and pulsed-field gel electrophoresis (PFGE) aided the identification of related cases caused by S. Enteritidis PT9c that occurred over a large geographical region of the United States and Canada (3). A third S. Enteritidis PT30 outbreak associated with raw almonds was reported in Sweden in 2005 to 2006 (15).We have characterized, by molecular methods, S. Enteritidis strains recovered from clinical, almond, and orchard samples related to these three outbreaks to determine whether they were related genotypically. Additional S. Enteritidis strains representing some common phage types also were examined for comparison. Strains were genotyped by PFGE profiling, multilocus variable-number tandem repeat analysis (MLVA), and comparative genomic indexing (CGI) with a S. enterica serovar Typhimurium LT2/Enteritidis PT4 microarray to determine relatedness and whether an association with the source could be determined.  相似文献   

7.
Trunk diseases are potential threats for almond productivity and longevity worldwide, including Iran. In a recent survey on fungal species associated with trunk diseases of almonds in north‐western Iran, Collophora isolates (tentatively identified as Collophora hispanica) were recovered with high frequency from wood samples with internal necrosis and brown to black vascular streaking of almond trees showing symptoms of decline. However, the pathogenic potential of Collophora isolates on almond trees in Iran remains unproven. In this study, the identity of the isolates was further confirmed as C. hispanica based on a combination of morphological data and sequence data of ITS‐rDNA region, and pathogenicity of C. hispanica isolates on almond was evaluated using excised shoot method and in greenhouse experiments. Collophora hispanica isolates induced lesions statistically different from the control, in both excised shoot method and greenhouse assays. Significant differences were observed among the isolates in the length of the lesion induced on wood. Collophora hispanica should be considered as the main trunk pathogens of almond trees in north‐western region of Iran. The distribution and host range of this new pathogen on almond remains to be studied.  相似文献   

8.
Aims:  To evaluate factors potentially contributing to the long-term persistence of Salmonella enterica serovar Enteritidis phage type (PT) 30 in an almond orchard. Methods and Results:  Surface and subsurface soil temperatures, and air temperatures in a radiation shelter, were recorded during a 12-month period, and were used to identify relevant storage temperatures (20 or 35°C) for microcosms of two different soil types (clay and sandy loams) with moisture levels near saturation or near field capacity. Salmonella Enteritidis PT 30 was inoculated into the microcosms at 6 log CFU g−1 dry weight. Between 14 and 180 days of incubation, counts of S. Enteritidis PT 30 decreased rapidly at 35°C and were significantly different (P < 0·05) from counts at 20°C, regardless of the soil type or moisture level. Salmonella was detected by enrichment of 10-g samples from all microcosms after 180 days of incubation at 20°C, but from none of the microcosms held at 35°C. To measure the potential for the growth of S. Enteritidis PT 30 in clay loam soil, an aqueous extract of almond hulls (containing 1·6% mono and disaccharides) or equivalent volume of water was added 7 days after inoculation. Significant (P < 0·05) growth of S. Enteritidis PT 30 was observed within 8 or 24 h of adding hull extract, but not water, to soil. Conclusions:  Opportunities may exist for S. Enteritidis PT 30 to survive for an extended time in almond orchard soils and to grow in these soils where hull nutrients are released. Significance and Impact of the Study:  Temperature has a significant impact on the long-term survival of S. Enteritidis PT 30 in soil, and nutrients leached from almond hulls may result in Salmonella growth. These factors should be considered in the design of Good Agricultural Practices for almonds.  相似文献   

9.
Aims: Salmonella is a worldwide foodborne pathogen causing acute enteric infections in humans. In the recent years, the use of bacteriophages has been suggested as a possible tool to combat this zoonotic pathogen in poultry farms. This work aims to isolate and perform comparative studies of a group of phages active against a collection of specific Salmonella Enteritidis strains from Portugal and England. Also, suitable phage candidates for therapy of poultry will be selected. Methods and Results: The Salm. Enteritidis strains studied were shown to have a significantly high occurrence of defective (cryptic) prophages; however, no live phages were found in the strains. Bacteriophages isolated from different environments lysed all except one of the tested Salm. Enteritidis strains. The bacteriophages studied were divided into different groups according to their genetic homology, RFLP profiles and phenotypic features, and most of them showed no DNA homology with the bacterial hosts. The bacteriophage lytic efficacy proved to be highly dependent on the propagation host strain. Conclusions: Despite the evidences shown in this work that the Salm. Enteritidis strains used did not produce viable phages, we have confirmed that some phages, when grown on particular hosts, behaved as complexes of phages. This is most likely because of the presence of inactive phage‐related genomes (or their parts) in the bacterial strains which are capable of being reactivated or which can recombine with lytic phages. Furthermore, changes of the bacterial hosts used for maintenance of phages must be avoided as these can drastically modify the parameters of the phage preparations, including host range and lytic activity. Significance and Impact of the Study: This work shows that the optimal host and growth conditions must be carefully studied and selected for the production of each bacteriophage candidate for animal therapy.  相似文献   

10.
Aim: To characterize the cellular and molecular properties of Salmonella Typhimurium exposed to antimicrobials in association with physicochemical property, biofilm formation ability and gene expression patterns. Methods and Results: The antimicrobial susceptibilities against Salmonella Typhimurium were evaluated to determine the MICs of allyl isothiocyanate (AITC), thymol, eugenol and polyphenol. Cell surface hydrophobicity, aggregation and biofilm formation assays were conducted to assess the physicochemical properties of Salm. Typhimurium treated with sublethal concentrations (SLC2D) of antimicrobials. The expression patterns of adhesion‐related genes (adrA, csgD, fimA and lpfE), virulence‐related genes (hilA and stn) and efflux‐related genes (acrA, acrB, ompD and tolC) were evaluated by real‐time RT‐PCR. Thymol exhibited the highest antimicrobial activity against Salm. Typhimurium planktonic, biofilm and dispersed cells, showing 0·18, 0·96 and 0·42 mg ml?1 of SLC2D values, respectively. The antimicrobial‐treated Salm. Typhimurium showed low hydrophobicity. The highest auto‐aggregation ability (67%) of polyphenol‐treated Salm. Typhimurium was positively associated with the enhanced ability to form biofilms. The csgD, fimA, hilA and lpfE genes were up‐regulated in the polyphenol‐treated Salm. Typhimurium planktonic and biofilm cells. Conclusion: The results suggest that the antimicrobial resistance and virulence potential varied depending on the physiological states of Salm. Typhimurium during the transition from planktonic to biofilm cell growth. Significance and Impact of the Study: This study can expand our understanding of cellular and molecular mechanisms of biofilm formation and also provide useful information for reducing biofilm‐associated virulence potential.  相似文献   

11.
Aims: To investigate the genetic diversity among S. Enteritidis isolates from different geographic regions to evaluate the relationship between phage types (PTs) and variable number tandem repeat analysis (VNTR) loci. Methods and Results: We performed multiple‐locus variable number tandem repeat analysis (MLVA) and phage typing on 245 S. Enteritidis isolates collected from sporadic human clinical cases in Michigan, Minnesota, New York, and Washington states between 2000 and 2007. Ninety‐four MLVA types and 22 different PTs were identified. Specific PTs were associated with a predominant allele for certain VNTR loci. Cluster analysis using a minimum‐spanning tree demonstrated two major clusters (I, II) and one minor cluster of isolates. PTs 8, 13a, 13 and 34 were significantly associated with MLVA cluster I. Phage types 1, 4, 6a, and 18 were significantly associated with MLVA cluster II. Conclusions: We found significant association between MLVA‐based clusters and PTs. Certain VNTR loci were associated with specific PTs and could serve as useful molecular markers for S. Enteritidis in epidemiological investigations. Significance and Impact of the Study: MLVA genotyping in combination with phage typing can be used for effective characterization of S. Enteritidis isolates. It can also be useful for tracing possible sources during investigations of sporadic and outbreak cases of S. Enteritidis.  相似文献   

12.
Aims: Adhesion of a micro‐organism to a cell surface is often considered to be the first step in pathogenesis. Inhibiting this process may have therapeutic effects in vivo. This study investigates the inhibitory effects of various bovine whey products on the association of Salm. Typhimurium, E. coli O157:H7 and C. malonaticus (formerly Enterobacter sakazakii) to the human CaCo‐2 cell line. Invasion of CaCo‐2 cells by Salm. Typhimurium and C. malonaticus was also examined. Methods and Results: Infection assays were performed by incubating pathogenic acteria with CaCo‐2 cells in the presence of untreated (UT) or enzyme‐modified (EM) whey products. Associated micro‐organisms were directly quantified by plate counts. Invasion of CaCo‐2 cells by Salm. Typhimurium and C. malonaticus in the presence/absence of test materials was also quantified using gentamicin protection assays. At a concentration of 40 mg ml?1, some UT whey products reduced association and invasion, but this effect was enhanced following hydrolysis with porcine pancreatic lipase. Conclusions: Both UT and EM sweet whey protein concentrates (WPCs) were found to be particularly effective inhibitors of association and invasion. All EM whey products significantly (P < 0·05) inhibited invasion of C. malonaticus into epithelial cells, causing a 2‐log reduction in the quantity of these micro‐organisms internalized. Significance and Impact of the Study: The present study suggests that whey products can inhibit association to and invasion of CaCo‐2 cells by selected micro‐organisms and may be useful in the treatment and/or prevention of foodborne infections.  相似文献   

13.
Aims: We investigated the antimicrobial effectiveness of lemongrass essential oil on organic leafy greens, romaine and iceberg lettuces and mature and baby spinach, inoculated with Salmonella Newport. The influences of exposure times and abuse temperatures on bacterial survival were also investigated. Methods and Results: Leaf samples were washed, inoculated with Salm. Newport (6‐log CFU ml?1) and dried. Inoculated leaves were immersed in solutions containing 0·1, 0·3 or 0·5% lemongrass oil in phosphate‐buffered saline for 1 or 2 min and then individually incubated at 4 or 8°C. Samples were taken at day 0, 1 and 3 for the enumeration of survivors. Compared to the PBS control, romaine and iceberg lettuces, and mature and baby spinach samples showed between 0·6–1·5‐log, 0·5–4·3‐log, 0·5–2·5‐log and 0·5–2·2‐log CFU g?1 reductions in Salm. Newport by day 3, respectively. Conclusions: The antimicrobial activity of lemongrass oil against Salm. Newport was concentration and time dependent. The antimicrobial activity increased with exposure time; iceberg samples treated for 2 min generally showed greater reductions (P < 0·05) than those treated for 1 min (c. 1‐log reduction difference for 0·3 and 0·5% treatments). Few samples showed a difference between refrigeration and abuse temperatures. Significance and Impact of the Study: This study demonstrates the potential of lemongrass oil solutions to inactivate Salm. Newport on organic leafy greens.  相似文献   

14.
Aims: To analyse genetic changes in the oafA gene explaining the loss of O5‐antigen expression in Salmonella Typhimurium and Salm. 4,[5],12:i:‐. Methods and Results: The oafA gene in 52 O5‐antigen‐negative and 77 O5‐antigen‐positive Salm. Typhimurium (N = 47) and Salm. 4,[5],12:i:‐ (monophasic Salm. Typhimurium strains, N = 82) was investigated by a combination of PCR screening and DNA sequencing to identify mutations leading to the suppression of the O5‐antigen. Various DNA sequence changes within the open reading frame (ORF) of oafA in O5‐antigen‐negative strains could be identified. In 77% of the O5‐antigen‐negative strains, a 7‐bp deletion of a duplicated sequence within the functional oafA gene led to a frameshift in the ORF. In four strains, an IS4 element and in two, an IS1 element was inserted at different positions. Four other strains carried at different positions single base pair substitutions causing a premature stop codon. Finally, in two strains, a deletion of the oafA 3′end of undetermined size was responsible for the lack of O5‐antigen expression. In none of the strains investigated, the complete ORF of oafA was deleted. Primers were designed and used to detect the most prominent variants. Conclusions: O5‐antigen‐negative Salm. Typhimurium and Salm. 4,[5],12:i:‐ strains carry an oafA pseudogene caused by different genetic events indicating that there is a selection for oafA mutations leading to the loss of O5‐antigen expression. Significance and Impact of the Study: The loss of O5‐antigen expression may be an example of a common evolutionary mechanism to escape host defence or to adapt to environmental changes. The data are the basis for the development of diagnostic PCR assays for the differentiation of O5‐antigen‐positive and O5‐antigen‐negative Salm. Typhimurium and its monophasic (Salm. 4,[5],12:i‐) strains.  相似文献   

15.
Multiple‐pass ultrahigh pressure homogenization (UHPH) was used for reducing microbial population of both indigenous spoilage microflora in whole raw milk and a baroresistant pathogen (Staphylococcus aureus) inoculated in whole sterile milk to define pasteurization‐like processing conditions. Response surface methodology was followed and multiple response optimization of UHPH operating pressure (OP) (100, 175, 250 MPa) and number of passes (N) (1–5) was conducted through overlaid contour plot analysis. Increasing OP and N had a significant effect (< 0·05) on microbial reduction of both spoilage microflora and Staph. aureus in milk. Optimized UHPH processes (five 202‐MPa passes; four 232‐MPa passes) defined a region where a 5‐log10 reduction of total bacterial count of milk and a baroresistant pathogen are attainable, as a requisite parameter for establishing an alternative method of pasteurization. Multiple‐pass UHPH optimized conditions might help in producing safe milk without the detrimental effects associated with thermal pasteurization.  相似文献   

16.
Aims: Adaptive phenotypes of enteric bacterial pathogens in response to in vivo‐mimicking stress conditions are important because of their potentiality to enhance stress resistance and ameliorate measures intended to control transmission and infectivity. Salmonella enterica serotype Enteritidis (S. Enteritidis) encounters a variety of such environments throughout its infection cycle, including high concentrations of the short‐chain fatty acid, Propionate (PA), during food processing and within the gut of infected hosts. With this study, we aimed to elucidate the significance of PA adaptation on stress resistance in S. Enteritidis. Methods and Results: We have shown (utilizing in vitro stress assays) that S. Enteritidis grown to stationary phase in the presence of PA has a dramatically enhanced resistance to commonly encountered in vivo stressors, including extreme acidity and oxidative/nitrosative stresses when compared to unadapted salmonellae. However, competitive infection between PA adapted and unadapted cells within a murine model showed that adapted cells were at a distinct disadvantage in vivo, resulting in decreased caecal colonization in infected mice. Conclusions: Our results suggest that, while long‐term PA adaptation induces strong resistance to specific stresses in vitro, it also reduces the overall infectivity of the adapted cells by inhibiting the organism’s colonization ability. Significance and Impact of the Study: In S. Enteritidis, PA adaptation is strongly associated with the induction of stress‐resistant phenotypes in vitro. Enhanced stress resistance ex vivo may increase environmental persistence and/or the overall transmissibility of this pathogen, while overall the virulence of the pathogen is likely to be hindered as a result of the decreased colonization ability of PA‐adapted S. Enteritidis.  相似文献   

17.
Aims: In this study, we used two molecular fingerprinting methods to investigate the genetic and clonal relationship shared by Australian Salmonella Sofia isolates. Methods and Results: A total of 84 Australian Salm. Sofia isolates from various states in Australia were typed using pulsed‐field gel electrophoresis (PFGE) (XbaI and SpeI) and repetitive element PCR (REP1R‐I primer). The previous problem of DNA degradation of Salm. Sofia strains was solved by modifying the lysis solution used to treat the bacterial plugs, allowing Salm. Sofia to be subtyped using PFGE. Molecular typing of isolates resulted in the generation of eight XbaI, six SpeI and five REP1 pattern profiles. Individual typing methods showed low discrimination index values (<0·5), indicating the poor discriminatory ability of the methods. However, the combination of the typing methods was able to improve the discrimination of isolates, further dividing them into 16 subtypes and raising the index value to 0·721. Conclusions: The combination of typing methods was shown to be the best approach to fingerprint Salm. Sofia. The Australian Salm. Sofia isolates only showed limited genetic diversity and probably share a clonal relationship. A majority of the Salm. Sofia isolates were not geographically restricted with the predominant pattern subtype observed amongst the isolates from various states. Significance and Impact of the Study: We have successfully devised a PFGE protocol that counteracts DNase activity of Salm. Sofia, enabling typing of this serovar.  相似文献   

18.
Aims: To characterize freshwater Bdellovibrio‐and‐like organisms (BALO) isolated in China and examine their potential in controlling growth of Salmonella enterica ssp. enterica serovar Typhimurium on tilapia fillets. Methods and Results: Four BALO isolates were recovered from a pond in Yanzhou of Shandong province, China, with Salm. Typhimurium as prey using double‐layer agar method. Partial 16S rDNA sequencing analysis identified BD2GL, BD5GL and BDXGL as Bdellovibrio bacteriovorus and BD2GS as a Peredibacter sp. Lysis experiments on 32 potentially pathogenic strains revealed that BALO lysis rates are in the range of 56·3–65·6%. On the five Salmonella strains tested, only BD2GS achieved 100% lysis rate. When applied on tilapia fillets against Salm. Typhimurium, BD2GS showed its growth control potential. Cell increments of Salm. Typhimurium were significantly lower (P < 0·05) in two BD2GS‐treated groups compared to control and low‐dose group (BD2GS to prey ratio, 1 : 1) was more effective than high‐dose group (BD2GS to prey ratio, 10 : 1) in controlling Salm. Typhimurium growth. Conclusions: Results of this study indicated that BD2GS could control Salm. Typhimurium growth on tilapia fillets. Significance and Impact of the Study: BALO could be used as a live protective culture in controlling bacterial growth and ensure food safety.  相似文献   

19.
Aims: To study a possible effect of a synthetic brominated furanone on biofilm formation and biofilm resistance to disinfectants in Salmonella enterica. Methods and Results: The effect of a synthetic furanone on biofilm formation of Salm. enterica serovar Agona and Salm. enterica serovar Typhimurium (11 strains of different origins) was evaluated in a microtiterplate assay. A significant reduction in biofilm build‐up in microtiterplates by the furanone was observed for seven of the strains tested. Biofilms by two Salm. Agona feed factory strains and the effects on survival after exposures to disinfectants (hypochlorite and benzalkonium chloride) were assessed for both strains. Pretreatment with furanone significantly potentiated the effect of the two disinfectants for both strains. Conclusions: The effect of disinfectants on Salmonella in biofilm was significantly enhanced when the biofilm was grown in the presence of furanone. This was probably because of an effect on biofilm architecture, composition and in some cases also biofilm build‐up. Significance and Impact of the Study: The present study gives valuable new knowledge in the fight against Salmonella biofilm in the environment because of the potentiated effect of conventional disinfectants.  相似文献   

20.
Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam‐heat treatment was fit to a four‐parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature‐related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration‐related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre‐exponential factor was >>1012 s?1 suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam‐heat treatment decreased endotoxin levels by 1–2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam‐heat treatment. The results from this study show that steam‐heat treatment is a viable endotoxin control strategy that can be implemented to support large‐scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1145–1160, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号