首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The primary objective of many longleaf pine (Pinus palustris) restoration programs is to enhance or restore habitat for wildlife dependent on herbaceous plant communities. Because herbaceous cover is inversely related to canopy cover, restoration programs often place restrictions on longleaf pine planting density. However, the influence of planting density on understory plant communities has been inadequately evaluated. Therefore, we initiated a study to examine the relative influences of planting density and other factors on overall understory composition and forage availability for white‐tailed deer (Odocoileus virginianus) and northern bobwhite (Colinus virginianus) in nine longleaf pine stands throughout the Coastal Plain of Alabama during 2017–2018. We found that coverage of herbaceous plants decreased 3.5%, coverage of woody plants decreased 2.4%, and coverage of northern bobwhite forage plants decreased 1.9% for each 1 m2/ha increase in longleaf pine basal area. However, planting density was not a significant predictor of current basal area, nor coverage of any functional group of plants we examined, likely because current longleaf pine density averaged only 46% (range = 30–64%) of seedling planting density. We did not detect an effect of prescribed fire on stand condition or understory plant communities, likely due to variability in fire timing and frequency. Our findings related to planting density were likely a function of low longleaf pine survival, which is not uncommon. Because of this and the inherent variability in growth rates for young longleaf pine stands, restoration programs should consider placing greater emphasis on post‐planting monitoring and management than planting density.  相似文献   

2.
In agricultural landscapes, the longleaf pine initiative (LLPI) and the Bobwhite Quail Initiative (BQI) aim to restore longleaf pine forests and early successional habitats, respectively. The early stage of longleaf pine stands and grass and forb vegetation produced by a combination of both restoration programs (LLPI‐BQI) may form habitat conditions favorable to early successional bird species and other birds, increasing avian diversity. We investigated how the LLPI and BQI programs affected taxonomic and functional diversity of birds and abundance of early successional birds (grassland and scrub/shrub species), and what environmental characteristics were associated with the diversity and abundance of birds. Our study was performed at 41 fields in Georgia, United States, during 2001–2002 by considering environmental characteristics at two spatial scales: local‐scale vegetation features and restoration program type (LLPI or LLPI‐BQI) and landscape‐scale vegetation features and landscape heterogeneity. Functional evenness, species richness, and abundance of grassland and scrub/shrub species did not show a clear association with local‐ or landscape‐scale variables. Shannon‐Wiener diversity was slightly influenced by restoration program type (local‐scale variable) with higher value at LLPI‐BQI stands than at LLPI stands despite no significant differences in local vegetation features between those stands. Functional divergence was strongly positively associated with landscape‐scale variables. That is, niche differentiation increased with increasing shrub coverage within a landscape, reducing competition between abundant bird species and others. Our results suggest that although a combination of BQI and LLPI program may have a positive effect on avian taxonomic diversity, it is important to consider shrub vegetation cover within a landscape to improve functional diversity.  相似文献   

3.
Aim There is increasing concern regarding sustainable management and restoration of planted forests, particularly in the Mediterranean Basin where pine species have been widely used. The aim of this study was to analyse the environmental and structural characteristics of Mediterranean planted pine forests in relation to natural pine forests. Specifically, we assessed recruitment and woody species richness along climatic, structural and perturbation gradients to aid in developing restoration guidelines. Location Continental Spain. Methods We conducted a multivariate comparison of ecological characteristics in planted and natural stands of main Iberian native pine species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra and Pinus sylvestris). We fitted species‐specific statistical models of recruitment and woody species richness and analysed the response of natural and planted stands along ecological gradients. Results Planted pine forests occurred on average on poorer soils and experienced higher anthropic disturbance rates (fire frequency and anthropic mortality) than natural pine forests. Planted pine forests had lower regeneration and diversity levels than natural pine forests, and these differences were more pronounced in mountain pine stands. The largest differences in recruitment – chiefly oak seedling abundance – and species richness between planted and natural stands occurred at low‐medium values of annual precipitation, stand tree density, distance to Quercus forests and fire frequency, whereas differences usually disappeared in the upper part of the gradients. Main conclusions Structural characteristics and patterns of recruitment and species richness differ in pine planted forests compared to natural pine ecosystems in the Mediterranean, especially for mountain pines. However, management options exist that would reduce differences between these forest types, where restoration towards more natural conditions is feasible. To increase recruitment and diversity, vertical and horizontal heterogeneity could be promoted by thinning in high‐density and homogeneous stands, while enrichment planting would be desirable in mesic and medium‐density planted forests.  相似文献   

4.
Assessing the status of soil nutrients with their corresponding microbial communities provides important information about degraded soils during the restoration of coastal wet pine forests. Net nitrogen mineralization, nitrogen‐oxidizing bacteria (NOB), and soil microbial biomass were compared with patch‐derived volume along a 110‐year longleaf pine (Pinus palustris Mill.) chronosequence for identifying a trajectory and ecological benchmark during forest restoration. Net nitrogen mineralization rates decreased significantly in the maturing‐aged, pine patches, driven by a larger drop in net nitrification. Net nitrification and abundance of NOB were higher in young pine patches compared to soils from the maturing (86–110 years) pine patches. Gross nitrate fluxes followed the nonfungal portion of the soil microbial biomass along the chronosequence, declining in 64‐year‐old pine patches. Microbial biomass peaked in patches 17–34 years of age, but significantly declined in the older patches. Fungal biomass leveled off without decline. Ammonium was the major source of nitrogen within the maturing pine patches as well as the wetland patches, indicating that ammonium maintains longleaf pine during growth‐limiting conditions. Nitrate dominated during rapid tree growth, optimally in mesic conditions. The relative amounts of available ammonium to nitrate can be used to model nitrogen cycling in facultative‐wetland pine forests of the coastal United States as soils alternate between wet and mesic conditions. A key restoration benchmark occurred after 86 years of pine development when pine patch growth rates slowed, with lower numbers of NOB, when the nonfungal biomass leveled off, and net nitrification rates are at a minimum, during pine maturation.  相似文献   

5.
Seed Bank Viability in Disturbed Longleaf Pine Sites   总被引:4,自引:0,他引:4  
Some of the most species‐rich areas and highest concentrations of threatened and endangered species in the southeastern United States are found in wet savanna and flatwood longleaf pine (Pinus palustris Mill.) communities. Where intensive forestry practices have eliminated much of the natural understory of the longleaf ecosystem, the potential for reestablishment through a seed bank may present a valuable restoration opportunity. Longleaf pine sites converted to loblolly pine plantations and non‐disturbed longleaf sites on the Coastal Plain of North Carolina were examined for seed bank presence and diversity. Conducting vegetation surveys and examining the seed bank using the seedling emergence technique allowed for verification of the seed bank presence, as well as evaluation of the quality of the seed bank on disturbed longleaf pine sites. Forty‐three species and over 1,000 individuals germinated, and the seed banks of both the disturbed and non‐disturbed stand types contained species not noted in the vegetation survey. Although many of these species were considered weedy and typical of disturbance, numerous taxa were indicative of stable longleaf pine communities. This study confirms both the presence and quality of seed banks in highly disturbed former longleaf pine sites, suggesting that the seed bank may be an important tool in restoration efforts.  相似文献   

6.
Abstract. Question: The decline of the Pinus palustris ecosystems has resulted from anthropogenic influences, such as conversion to pine plantation forestry, agriculture and land development, all of which are closely related to increases in human populations. Other effects, however, have arisen from alterations in disturbance regimes that maintain the structure and function of these ecosystems. How have alterations of the disturbance regime altered the physiognomy of ‘old‐growth’ stands, and what are the implications for ecosystem conservation and restoration? Methods: In contrast to models that emphasize close interactions among the vertically complex strata, we develop a conceptual phenomenological model for the physiognomic structure of Pinus palustris stands. We relate two natural disturbances (tropical storms and fire) that affect different stages of the life cycle to different aspects of the physiognomic structure. We then compare overstorey stand structure and ground cover composition of two old‐growth longleaf stands near the extremes of different composite disturbance regimes: the Wade Tract (frequent hurricanes and fire) and the Boyd Tract (infrequent hurricanes and long‐term fire exclusion). Results: We predict that tropical storms and fires have different effects on stand physiognomy. Tropical storms are periodic, and sometimes intense, whereas fires are more frequent and less intense. Hurricanes directly influence the overstorey via wind‐caused damage and mortality, and indirectly influence the herb layer by altering the spatial distribution of shading and litter accumulation. Fire exerts direct effects on juvenile stages and indirect effects on the herb layer via fine fuel consumption and selective mortality of potential competitors of P. palustris juveniles. These differences in effects of disturbances can result in widely different physiognomies for P. palustris stands. Finally, some global climate change scenarios have suggested that changes may occur in tropical storm and fire regimes, altering frequency and severity. Such changes may greatly affect pine stands, and ultimately entire pine savanna ecosystems. Conclusions: Our phenomenological model of disturbance regimes in Pinus palustris old‐growth produces very different physiognomies for different disturbances regimes that reflect natural process and human management actions. This model can be used to derive restoration strategies for pine savannas that are linked to reinstitution of important ecological processes rather than specific physiognomic states.  相似文献   

7.
Longleaf pine (Pinus palustris) savanna characterized by open-canopy, diverse herbaceous vegetation, and high amounts of bare soil once covered much of the southeastern United States Coastal Plain. The unique structural and vegetative conditions of this ecosystem support endemic reptiles and amphibians that have declined as longleaf pine forests have been lost or degraded. Private working pine (Pinus spp.) forests managed for timber production now occur throughout the southeastern United States and have replaced much of the historical longleaf pine savanna. The examination of herpetofaunal (reptile, amphibian) communities in private working loblolly pine (P. taeda) landscapes, particularly in the western Gulf Coastal Plain is lacking. Using repeated field surveys and hierarchical community occupancy models, we examined occupancy and species richness of herpetofauna across 81 sites spanning gradients of management practices, vegetative conditions, and soil composition in northwestern Louisiana, USA, 2017–2019. Young pine stands (<6 yr) exhibited structural characteristics most similar to mature longleaf pine reference sites (>30 yr), while mid-aged stands (13–26 yr) often featured closed canopy and dense midstory. Vegetation conditions varied widely depending on landscape characteristics and site-specific disturbance regimes. We documented 43 species of herpetofauna, including 9 open-pine-associated species. Occupancy of open-pine-associated herpetofauna was positively associated with open-canopy and understory conditions, and sandy soil area. Sites providing open-canopy conditions were often occupied by open-pine-associated species regardless of overstory type and disturbance method. Overall richness of herpetofauna was greatest at sites with moderate canopy cover outside of sandy soil regions. Working pine landscapes in the western Gulf Coastal Plain can support diverse herpetofaunal assemblages, including open-pine-associated species, when management practices maintain open-canopy conditions on sandy, upland soils. More broadly, our results provide insight into how forest management practices affect herpetofauna and may guide practices that can contribute to conservation value of working pine forests.  相似文献   

8.
Midstory hardwoods are traditionally removed to restore longleaf pine on fire‐excluded savannas. However, recent evidence demonstrating midstory hardwood facilitation on longleaf pine seedling survival has brought this practice into question on xeric sites. Also, midstory hardwoods could facilitate longleaf pine seedling establishment, as hardwood litter may conceal seeds from seed predators or improve micro‐environmental conditions for seedling establishment. However, little is known about these potential mechanisms. In this study, we tracked longleaf pine seed depredation and germination in artificially seeded plots (11 seeds/m2) in a factorial design fully crossing hardwood retention or removal with vertebrate seed predator access or exclusion in the Sandhills Ecoregion of North Carolina, U.S.A. Seed depredation averaged 78% across treatments and was greatest in unexcluded plots. Hardwood retention did not affect seed depredation. Longleaf pine averaged 3.6 germinants/4 m2 across treatments, and was six times more abundant where vertebrates had been excluded. Hardwood removal had a strong positive effect on seedling germination, likely due to the removal of litter, but only when vertebrates were excluded. Our results indicated midstory hardwoods are not facilitating longleaf pine seedling establishment. Nevertheless, our results indicated that hardwood removal may not increase longleaf pine seedling establishment, as seed depredation diminished the effectiveness of hardwood removal under mast seed availability. Collectively, these results demonstrate the underlying complexity of the longleaf pine ecosystem, and suggest that planting may need to be part of the restoration strategy on sites where seed depredation limits longleaf pine natural regeneration.  相似文献   

9.

Aims

Longleaf pine (Pinus palustris Mill.) is being restored across the U.S. South for a multitude of ecological and economic reasons, but our understanding of longleaf pine’s response to soil physical conditions is poor. On the contrary, our understanding of loblolly pine (Pinus taeda L.) root and shoot growth response to soil conditions is well established.

Methods

We performed a comparative greenhouse study which modeled root length density, total seedling biomass, and the ratio of aboveground:belowground mass as functions of volumetric water content, bulk density and soil fertility (fertilized or not).

Results

Root length density was about 35 % greater in longleaf pine seedlings compared to loblolly pine seedlings, and was reasonably well modeled (R 2?=?0.54) for longleaf pine by bulk density (linear), volumetric water content (quadratic), soil fertility, and the interactions of bulk density, volumetric water content, species, and soil fertility. The aboveground:belowground mass ratio (ABR) increased at both extremes of water content.

Conclusions

This research indicates that young longleaf pine seedling root systems respond more negatively to extremes of soil physical conditions than loblolly pine, and compacted or dry loamy soils should be ameliorated in addition to normal competition control, especially on soils degraded by past management.  相似文献   

10.
Chronic human activities may result in new and permanent successional trajectories in certain ecosystems. The invasion of longleaf pine ecosystems by sand pine in the Florida Panhandle is one such change in the landscape. This study examined the spatial pattern of sand pine expansion and explored the natural and anthropogenic disturbances that fostered this invasion. Aerial photographs (1949, 1994) and Geographic Information Systems analyses confirmed sand pine expansion at Eglin Air Force Base. In 1949, there were 8,982 ha of sand pine in the southern portion of the study area near riparian and coastal lowland forests. By 1994, sand pine had expanded further upland and inland, for a total of 17,147 ha in the study area. Sand pine age data showed that this expansion had started by 1920 but increased rapidly in the 1940s. Historical accounts and structural data from stands suggest that land-use activities associated with the extraction of turpentine promoted the invasion by sand pine. Fires were suppressed in longleaf pine forests to protect turpentine trees, resulting in increased vegetation cover and decreased regeneration of longleaf pine. In addition, stands were typically harvested after turpentining, and there was little or no advanced regeneration of longleaf pine. Sand pine age histograms showed that the onset of high establishment rates (1940s) coincided with changes in land ownership and widespread fire suppression. Sand pine is likely to persist in these ecosystems due to its abundant regeneration. Received 17 March 1999; accepted 28 January 2000.  相似文献   

11.
Frequent fire is an integral component of longleaf pine ecosystems, creating environmental conditions favoring survival and growth of juvenile pines. This study examined stand structure, species composition, and longleaf pine regeneration in an old-growth tract of longleaf pine forest (Boyd Tract) experiencing long-term (>80 yr) fire exclusion in the Sandhills of North Carolina. Sampling of woody stems (i.e., 2.5 cm diameter at breast height) and tallies of longleaf pine seedlings were carried out in plots established randomly on upland, mesic areas and lowland, xeric areas within the Boyd Tract. Dominant woody species in mesic plots were black oak, hickories, and large, sparse longleaf pines. Xeric plots had high densities of turkey oak with the large longleaf pines, as well as higher frequencies of smaller longleaf stems. These differences between areas were associated with higher clay content of upland soils and higher sand content of lowland soils. Age-class frequency distributions for fire-suppressed longleaf pine following the last wildfire at the Boyd Tract approximately 80 yr ago contrasted sharply with data from an old-growth longleaf tract in southern Georgia (Wade Tract) that has been under a long-term frequent fire regime. Post-burn recruitment for the Boyd Tract wildfire appears to have been initially high on both site types. Longleaf pine recruitment diminished sharply on the mesic site, but remained high for 60 yr on the xeric site. Currently, longleaf pine regeneration is minimal on both site types; several plots contained no seedlings. Sharp contrasts in longleaf pine dominance and stand structure between the Boyd and Wade Tracts demonstrate the importance of large-scale disturbance, especially hurricanes and fire, in shaping the structure and function of longleaf pine ecosystems of the southeastern United States. In particular, long-term exclusion of fire on the Boyd Tract has altered stand structure dramatically by permitting hardwoods to occupy at high densities the characteristically large gaps between longleaf stems that are maintained by fire and other disturbances.  相似文献   

12.
Effects of litter removal on arthropod communities in pine plantations   总被引:4,自引:0,他引:4  
Natural and anthropogenic disturbances can cause abrupt changes in trophic interactions by altering the rate, timing, or composition of organic inputs to ecological systems which in turn can shift patterns of species dominance. We examined the short-term effects of litter removal on soil fauna in pine plantations of three different species (longleaf, Pinus palustris; loblolly, P. taeda; and slash, P. elliottii) using a manipulative experiment, with the goal of examining differences among dominant orders of arthropods and differences among timber types. We sampled arthropods once per month for 6 months immediately following raking, and found that removal of the litter caused significant changes to abundance or presence of five of the nine dominant orders. Reductions in abundances of arthropod orders were most apparent in loblolly pine stands, while increases in abundance were more common in longleaf and slash pine stands. The differential impact among orders suggests that removal of the litter layer is likely to alter trophic interactions by changing the relative abundance of functional groups. Repeated litter removal via raking could have negative repercussions on ecosystem stability. Finally, nutrient additions through fertilization seem unlikely to mitigate the changes imposed on the arthropod community through litter removal.  相似文献   

13.
The association of the exotic fire ant, Solenopsis invicta with man-modified habitats has been amply demonstrated, but the fate of such populations if ecological succession proceeds has rarely been investigated. Resurvey of a fire ant population in a longleaf pine plantation after 25 years showed that the recovery of the site from habitat disturbance was associated with a large fire ant population decline. Most of the persisting colonies were associated with the disturbance caused by vehicle tracks. In a second study, mature monogyne fire ant colonies that had been planted in experimental plots in native groundcover of the north Florida longleaf pine forest had mostly vanished six years later. These observations and experiments show that S. invicta colonies rarely persist in the native habitat of these pine forests, probably because they are not replaced when they die. A single site harbored a modest population of polygyne fire ants whose persistence was probably facilitated by reproduction through colony fission.  相似文献   

14.
Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of quantifying degraded states and provides a series of hypotheses for future experimental restoration work. More broadly, our work provides a framework for developing and evaluating reference models that incorporate multiple, interactive anthropogenic drivers of ecosystem degradation.  相似文献   

15.
The clearing of natural vegetation for agriculture has reduced the capacity of natural systems to provide ecosystem functions. Ecological restoration can restore desirable ecosystem functions, such as creating habitat for animal conservation and carbon sequestration as woody biomass. In order to maintain these beneficial ecosystem functions, restoration projects need to mature into self‐perpetuating communities. Here we compared the ecological attributes of two types of restoration, “active” tree plantings with “passive” natural forest regeneration (“natural regrowth”) to existing remnant vegetation in a cleared agricultural landscape. Specifically, we measured differences between forest categories in factors that may predict future restoration failure or ecosystem collapse: aboveground plant biomass and biomass accrual over time (for regrowing stands), plant density and size class distributions, and diversity of functional groups based on seed dispersal and growth strategy traits. We found that natural regrowth and planted forests were similar in many ecological characteristics, including biomass accrual. Despite this, planted stands contained fewer tree recruit and shrub individuals, which may be due to limited recruitment in plantings. If this continues, these forests may be at risk of collapsing into nonforest states after mature trees senesce. Lower shrub density and richness of mid‐story trees may lead to lower structural complexity in planting plots, and alongside lower richness of fleshy‐fruited plant species may reduce animal resources and animal use of the restored stand. In our study region, natural regrowth may result in restored woodland communities with greater conservation and carbon mitigation value.  相似文献   

16.
Citizen science has the potential to generate valuable biologic data for use in restoration monitoring, while also providing a unique opportunity for public participation in local restoration projects. In this article, we describe and evaluate a citizen science program designed to monitor the effect of stream restoration construction disturbance on the macroinvertebrate community. We present the results of a 7‐year stream restoration study conducted by citizen scientists utilizing a Before‐After‐Control‐Impact (BACI) design. Trait‐based macroinvertebrate data showed a strong response to restoration construction disturbance and return to pre‐restoration conditions within 2 years. The findings of this study suggest that citizen science can generate meaningful BACI‐oriented data about ecological restoration; however, until more research is conducted, citizen data should only be used to augment professional data intended to demonstrate restoration success.  相似文献   

17.
Abstract Logging, fire suppression, and urbanization have all contributed to the serious decline and fragmentation of Pinus palustris (longleaf pine) ecosystems in the southeastern United States. Effective management of the remaining patches of these pyrogenic communities must incorporate periodic low‐intensity fires, even where they are located on private lands in populated urban and suburban areas. To explore the effects of fire and its potential use for restoration and management of small fragments surrounded by suburban development, we conducted growing season prescribed fires in remnant longleaf pine sandhill patches in the suburbs of Gainesville, Florida. Density and composition of hardwoods were surveyed pre‐burn and 1 and 9 months post‐burn. Woody stem density decreased in the burn plots, predominantly in the smaller size classes. Flowering responses of forbs and small shrubs were surveyed six times post‐burn for 1 year. Overall, the burns did not yield greater densities of flowering stems, but burn patches had higher species richness and diversity than control patches. In addition, there were consistently greater numbers of “showy flowered” sandhill species in flower in burn patches relative to controls. The results of this research demonstrate that prescribed fire can be used for restoration and management of small remnants of longleaf pine sandhill in suburban neighborhoods. It is also clear that although a single prescribed burn can be effective, it will take more than one burn to attain desired restoration goals in degraded longleaf remnants.  相似文献   

18.
Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River County, Mississippi, USA, and density, basal area, and percent stocking in Pearl River County using General Land Office surveys and US Forest Service Forest Inventory and Analysis surveys. Historical longleaf ecosystems were about 85% pine, with lesser amounts of broadleaf evergreen and oak species. Densities were about 175 to 180 trees/ha, mean tree diameters were 45 cm, and stocking was around 60% to 65%, which suggested longleaf pines were closed woodlands. Current forests are 38% to 57% pine, primarily loblolly, while longleaf pine is 2% to 8% of composition. Indeed, current longleaf pine composition across the Coastal Plain averages 3% and does not reach 10% at smaller landscape scales. Fire-sensitive broadleaf species of water oak, sweetgum, yellow-poplar, and red maple increased from about 0.5% composition to 2% to 10% of composition. Forests became twice as dense, at about 280 trees/ha to 330 trees/ha, with mean tree diameters of 22 cm. These results characterize conversion from open old growth longleaf forests, resulting in part from human maintenance, to successional forests due to human disruption of the historical ecosystem. It is important to remember structure and composition of historical forests for restoration and recognize wholesale changes so that successional forests do not become the new social and cultural baseline.  相似文献   

19.

The longleaf pine (LLP) savanna ecosystem once covered?~?92 million acres of the Southeast USA, but due to anthropogenic activities such as logging and fire suppression, only 3% of its once widespread historic range remains. While many restoration efforts are underway to conserve this biodiverse ecosystem, restoration must be done in the context of climate change. In the last few decades, heatwaves have increased in frequency and intensity across the Southeastern USA with further increases predicted. To expand our understanding of LLP savanna restoration in light of these changes, we ran a series of three simulated heatwave greenhouse experiments through a Course-based Undergraduate Research Experience (CURE) incorporating?~?150 undergraduate researchers per experiment. We measured plant growth metrics for four understory grasses commonly used in LLP savanna restoration efforts. We found that while most grass plug individuals survived heatwave conditions, aboveground production was reduced due to heatwaves. This productivity decrease could result in less biomass available for the essential vegetation fire feedback loop, where fire increases grass biomass, and in turn, more grass provides more fuel for fire. These results imply that land managers can proactively compensate for biomass loss due to heatwaves by planting more grass plugs during initial restoration.

  相似文献   

20.
The historical range of longleaf pine (Pinus palustris P. Mill) has been greatly reduced, in part, by lack of fire. Recently, the application of fire has become an accepted practice for the restoration of longleaf pine to former parts of its natural range. This study was designed to evaluate the effects of season of prescribed fire on the root growth and nonstructural carbohydrate concentrations of longleaf pine, and identify the time of year when fire has the least negative effect on longleaf pine root processes. We found that root growth was generally less on July-burned plots than on either March- or May-burned plots and we attribute these responses to the effect of fire on interaction between root processes and the soil environment. Specifically, soil water and temperature conditions may have been less favorable for root growth on the July-burned plots compared to the March- and May-burned plots. With two years of information on the seasonal dynamics of foliage production, root growth, and root carbohydrates, we determined that at our study site, optimal prescribed fire would impact tree growth less in November through March compared to other times of the year. We also observed that severe drought during the 1998 growing season was associated with a 3-month delay in peak root growth, and prolonged drought in 1999 through 2000 coincided with a reduction in root starch storage. We conclude that season of prescribed fire potentially affects root processes, but that severe or prolonged drought may either interact with or override these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号