首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volker Nicolai 《Oecologia》1989,80(3):421-430
Summary The thermal properties of 26 African tree species in two different ecosystems were studied using thermocouples. In a subtropical moist forest were three bark types of trees: species with thin and smooth bark types with low values of insulation across the bark; species with a more structured bark type and medium insulation values; and species with deep-fissured or scaly bark types and high insulation values. Only these latter trees are able to survive openings in the subtropical forest and stand alone on edges of forest gaps. In the savanna all tree species showed adaptations in the structure of their bark in different forms: many tree species shade their trunks. Some have low bark insulation and these are known to be sensitive to fires. Some tree species show high bark insulation and do not shade their trunks. Tree species with white bark avoid overheating of their surface by reflection of the radiation. The arthropod community living exclusively on the bark was investigated for the first time on South African trees, on ten tree species. In the two different ecosystems this habitat is occupied by different arthropod groups. In the subtropical forest Acari, Araneae, Opiliones, Isopoda, Myriopoda, Blattodea, Psocoptera, Heteroptera, Coleoptera, Formicidae, and Nematocera (Diptera) are the main arthropod groups living exclusively on the bark of trees. In the savanna Pseudoscorpiones, Araneae, Collembola, Blattodea, Psocoptera, Coleoptera, Neuroptera, Termites, Formicidae, Hymenoptera and Brachycera (Diptera) are the main arthropod groups living exclusively on the bark of trees. Within one ecosystem on one bark type the dominant species are similar; richly structured bark types have a richer fauna. In the forest, bark arthropod diversity is related to the bark structure of the constituent trees, and the arthropod communities on the bark would reflect changes in the structure of the forest. Forests comprising tree species with different bark types would have a richer total bark arthropod fauna. Specialists on richly structured bark types would die out if tree species composition were altered by man to give stands consisting only of tree species with smooth bark types. Bark arthropods in a subtropical moist forest have different proportions of herbivorous and fungivorous compared to carnivorous species than those on the bark of trees in a savanna.  相似文献   

2.
Conservation status of the North American fish fauna in fresh water   总被引:1,自引:0,他引:1  
The status of the North American fish fauna includes 292 species of fishes in the categories of endangered, vulnerable, rare, indeterminate, and extinct. This constitutes 28% of the known fauna. The status of fishes and their habitats continues to decline, especially in the arid regions of western U.S.A. and northern Mexico. The Endangered Species Act is the most powerful tool currently available to protect rare fishes. While many fishes probably have been saved from extinction by this Act, surprisingly few have improved enough to be removed from under its protection.  相似文献   

3.
  • Frost events occur with a significant frequency in savannas of the Southern Hemisphere, especially in the Cerrados of Brazil. One of the main strategies to deal with such events is to invest in thick and dense bark, which can insulate internal branch tissues and protect buds, essential to ensure resprouting if frost damage causes plant canopy die‐back. Such strategies may be fundamental to determine the persistence of savanna species in regions where low temperatures and frost events are recurrent.
  • Here we describe bud protection and bark strategies of 53 woody species growing in typical savanna vegetation of central Brazil. In addition, we used an experimental approach exposing branches to 0 °C to measure temperature variation in internal branch tissue and test its relationship to bud protection and bark properties.
  • We found that the majority of species (69%) showed medium to high bud protection against extreme temperatures; however, the degree of bud protection was not clearly related to bark properties, such as bark thickness and density. Bark density is a fundamental trait in determining protection against low temperatures (0 °C), since species with low bark density showed lower temperature variation in their internal branch tissues, independently of the bud protection degree.
  • Bark properties and bud protection are two different (albeit related) strategies for the protection and persistence of savanna trees under extreme environmental temperatures and can explain ecological observations related to savanna tree responses after frost events.
  相似文献   

4.
G. D. COOK 《Austral ecology》1994,19(4):359-365
Abstract The nutrient loads contained in the grassy fuel before fires, and of ash subsequently, were compared to determine the fluxes of macronutrients, copper and zinc during fires at Kapalga in Kakadu National Park. The fluxes were estimated in three vegetation types: forest, woodland and open woodland. The magnitudes of the fluxes were greatest in the forest community where grassy fuel loads were highest at about 6.3 t ha?1. In these sites, 54–94% of all measured nutrients in the fuel were transferred to the atmosphere during the fires. For each nutrient, the proportion transferred to the atmosphere as entrained ash was calculated by assuming that calcium was not volatilized during the fires. If the transfer of entrained ash represents local redistribution only, then rainfall accession and the deposition of these particu-lates should replace most of the losses of all nutrients except nitrogen (N). Estimated rates of biological fixation of N appear to be insufficient to replace the annual losses of N. It is therefore concluded that a regime of annual fires that completely burn the available grassy fuel would deplete N reserves in these savannas, unless there are other sources of biologically fixed N, which are unknown at present.  相似文献   

5.
6.
Abstract. The history of a rapidly changing mosaic of prairie and oak savanna in northern Indiana was reconstructed using several methods emphasizing different time scales ranging from annual to millennial. Vegetation change was monitored for 8 yr using plots and for 30 yr using aerial photographs. A 20th century fire history was reconstructed from the stand structure of multiple-stemmed trees and fire scars. General Land Office Survey data were used to reconstruct the forest of A.D. 1834. Fossil pollen and charcoal records were used to reconstruct the last 4000 yr of vegetation and fire history. Since its deposition along the shore of Lake Michigan about 4000 yr ago, the area has followed a classical primary dune successional sequence, gradually changing from pine forest to prairie/oak savanna between A.D. 264 and 1007. This successional trend, predicted in the models of Henry Cowles, occurred even though the climate cooled and prairies elsewhere in the region retreated. Severe fires in the 19th century reduced most tree species but led to a temporary increase in Populus tremuloides. During the last few decades, the prairie has been invaded by oaks and other woody species, primarily because of fire suppression since A.D. 1972. The rapid and complex changes now occurring are a response to the compounded effects of plant succession, intense burning and logging in the 19th century, recent fire suppression, and possibly increased airborne deposition of nitrates. The compilation of several historical research techniques emphasizing different time scales allows this study of the interactions between multiple disturbance variables.  相似文献   

7.
In this study, systematic variation in tree morphology across a rainfall gradient in Australia's tropical savanna biome and its implications for carbon stocks and dynamics were quantified. The aim was to support efforts to manage fire regimes to increase vegetative carbon stocks as a greenhouse gas mitigation strategy. The height of trees for a given trunk diameter declines with decreasing rainfall from 2000 to 300 mm and increasing dry season length across the Australian savanna biome. It is likely that increasing dry season length is the main driver of this decline rather declining rainfall per se. By taking account of the response of total basal area to rainfall and soil type, stand structure, and tree height and diameter relationships, the carbon stocks in live trees were estimated to decline from about 34 t ha?1 in the wetter savannas to 6 t ha?1 in the drier savannas. These values are broadly consistent with field‐based estimates. Because of the declining ratio of height to trunk diameter, trees of a given diameter in drier regions will be more likely to be killed by fires of a given intensity than trees in wetter regions. Thus single fires of given intensity are likely to have a greater proportionate impact on live tree carbon stock in drier savannas, but a much greater absolute impact in wetter savannas due to the greater total carbon stock. Projected decreases in early wet season rainfall under climate change scenarios, despite projections of little change in total precipitation in northern Australia, may lead to decreased carbon stock in live trees through two mechanisms: a reduction in total basal area and decreases in tree height for given trunk diameters.  相似文献   

8.
This paper considers shell-shape variation in samples of the dog-whelk/dog-winkle, ucella lapillus , from the southern half of its North American range, between 41 and 46N, and compares it with the pattern seen in Europe. At the extreme southern limit of its American range, to the south of Cape Cod, the species exhibits features to be expected in an animal close to an environmental limit. It is generally rare and has a patchy distribution. There is little variation in the shell: almost all adult individuals have rather large, thick, white, elongated shells. This contrasts sharply with the situation in Portugal, at the southern limit in Europe, where the animals have small thin, coloured shells of intermediate shape.
Away from the marginal situation, north of Nahant (42CN) in America, the species shows much the same range of variability in shell size, shape and colour on both sides of the Atlantic. Most populations appear to show the same pattern of shape variation in asociation with the exposure of their habitat to wave action. Animals from exposed sites tend to have shorter, squatter shells than their compatriots in shelter. However, in America as in some parts of Europe, there are occasional enclaves which do not fit the usual pattern. It is interesting to note that the form normally associated with extremely exposed shores from Brittany to Faroe in Europe is found in Atlantic Canada but is apparently absent from southern populations in both the U.S.A and the Iberian Peninsula.  相似文献   

9.
Question: What was the role of fire during the establishment of the current overstory (ca. 1870–1940) in mixed‐oak forests of eastern North America? Location: Nine sites representing a 240‐km latitudinal gradient on the Allegheny and Cumberland Plateaus of eastern North America. Methods: Basal cross‐sections were collected from 225 trees. Samples were surfaced, and fire scars were dated. Fire history diagrams were constructed and fire return intervals were calculated for each site. Geographic patterns of fire occurrence, and fire‐climate relationships were assessed. Results: Fire was a frequent and widespread occurrence during the formation of mixed‐oak forests, which initiated after large‐scale land clearing in the region ca. 1870. Fire return ranged from 1.7 to 11.1 years during a period of frequent burning from 1875 to 1936. Fires were widespread during this period, sometimes occurring across the study region in the same year. Fires occurred in a variety of climate conditions, including both drought and non‐drought years. Fires were rare from 1936 to the present. Conclusions: A variety of fire regime characteristics were discerned. First, a period of frequent fire lasted approximately 60 years during the establishment of the current oak overstory. Second, fire occurred during a variety of climate conditions, including wet climates and extreme drought. Finally, there was within‐site temporal variability in fire occurrence. These reference conditions could be mimicked in ongoing oak restoration activities, improving the likelihood of restoration success.  相似文献   

10.
Hoffmann WA  Orthen B  Franco AC 《Oecologia》2004,140(2):252-260
Tropical savannas and closed forests are characterized by distinct tree communities, with most species occurring almost exclusively in only one of the two environments. The ecology of these two groups of species will largely determine the structure and dynamics of the savanna-forest boundary, but little is known about the ecological and physiological differences that might control their distributions. We performed field and nursery experiments to compare seedling establishment success, predawn leaf water potential, biomass allocation, and root carbohydrate concentration of congeneric species, each composed of one savanna species and one forest species. Seedling establishment of savanna and forest species responded differently to vegetation cover, with forest species having lowest establishment success in the open savanna and savanna species having lowest success in forest. Subsequent survival followed similar patterns, resulting in even greater differences in cumulative success. The low survival of forest species in the savanna appears related to drought stress, as seedlings of forest species had lower predawn leaf water potential than savanna species. Seedlings of savanna species had greater root: shoot ratios and root total nonstructural carbohydrate (TNC) concentration, particularly among evergreen genera. Among evergreen genera, root TNC per shoot mass, which may largely determine resprout capacity, was seven times higher in savanna species than forest species. Although water availability and microclimate may reduce the success of forest species, these factors appear unable to completely exclude forest seedling establishment in savanna. Fire, on the other hand, appears to be a much more absolute constraint to success of forest species in savanna.  相似文献   

11.
12.
13.
North America is a large continent with extensive climatic, geological, soil, and biological diversity. As biota faces threat from habitat destruction and climate change, making a quantitative assessment of biodiversity becomes critically important. Rapid digitization of plant specimen records and accumulation of DNA sequence data enable a much‐needed broad synthesis of species occurrences with phylogenetic data. In this study, the first such synthesis of a flora from such a large and diverse part of the world is attempted, all seed plants from the North American continent (here defined to include Canada, United States, and Mexico), with a focus on examining phylogenetic diversity and endemism. We collected digitized plant specimen records and chose a coarse grain for analysis, recognizing that this grain is currently necessary for reasonable completeness per sampling unit. We found that raw richness and endemism patterns largely support previous hypotheses of biodiversity hotspots. The application of phylogenetic metrics and a randomization test revealed novel results, including a significant phylogenetic clustering across the continent, a striking east–west geographical difference in the distribution of branch lengths, and the discovery of centers of neo‐ and paleoendemism in Mexico, the southwestern USA, and the southeastern USA. Finally, our examination of phylogenetic beta diversity provides a new approach to compare centers of endemism. We discuss the empirical challenges of working at the continental scale and the need for more sampling across large parts of the continent, for both DNA data for terminal taxa and spatial data for poorly understood regions, to confirm and extend these results.  相似文献   

14.
15.
Woody plant encroachment is a common consequence of disturbance in savannas. Grazers and browsers interfere with sapling establishment dynamics by direct consumption of plant tissue, changing soil nutrient status (through fertilization and trampling) and grass competition. Studies evaluating the effects of herbivory on sapling establishment have mostly been extrapolated from single species. In a controlled field experiment, we studied the effects of clipping (simulating grazing and browsing), nutrients, grass competition, and their interactive effects on sapling survival and growth of four dominant humid and four dominant mesic savanna species. We conducted this experiment in a humid South African savanna. We found no effects on sapling survival by the treatments provided. However, clipped saplings of all species increased their investment in relative growth rate of stem length (RGRL). Clipping had a greater negative impact on relative growth rate of more humid than mesic species in terms of stem diameter (RGRD), total dry biomass and proportion of leaf biomass. Nutrients had a positive effect on the RGRL and sapling biomass of three mesic species. Positive effects of nutrients on RGRL of one humid and two mesic species were observed in their clipped saplings only. Grass competition had a strong negative impact on all growth parameters measured. Clipped saplings of one humid and two mesic species had lower RGRL with grass competition whereas intact saplings showed no significant response. After clipping, humid savanna species were more vulnerable to grass competition than mesic species, with reduced ability to use nutrients. In conclusion, herbivory increases sapling vulnerability to grass competition, with humid species being more susceptible than mesic species, indicating that woody-plant control strategies are more likely to be effective in humid savannas.  相似文献   

16.
Abstract. Above-ground grass biomass, necromass and tree litter were measured monthly over a vegetation cycle under tree clumps and in the open, in a humid savanna in Côte d'Ivoire. Grass production was calculated using several methods to better discriminate the contribution of the different grass compartments. Above-ground grass biomass is higher in the open than under canopies during the second part of the growing season, but there is no difference in grass necromass dynamics. Physical protection of grass necromass by tree litter against decaying under tree canopies was assumed to explain this discrepancy. Grass production, calculated as the sum of positive increments of biomass and necromass, equals 1073 g m-2 yr-1 in the open, against 74 % underneath trees. However, basal ground cover is only 50 % of that in the open. Comparison with other savanna studies as a whole does not show any significant effect of rainfall on the relationship between under-canopy and outside-canopy grass production. However, in arid conditions, grass production tends to increase under light-canopied trees (mostly Acacia legumes) which hardly affect grass photosynthesis, but add high quality litter to the soil surface.  相似文献   

17.
Atmospheric CO2 has more than doubled since the last glacial maximum (LGM) and could double again within this century, largely due to anthropogenic activity. It has been suggested that low [CO2] contributed to reduced tree cover in savanna and grassland biomes at LGM, and that increasing [CO2] over the last century promoted increases in woody plants in these ecosystems over the past few decades. Despite the implications of this idea for understanding global carbon cycle dynamics and key global role of the savanna biome, there are still very few experimental studies quantifying the effects of CO2 on tree growth and demography in savannas and grasslands. In this paper we present photosynthetic, growth and carbon allocation responses of African savanna trees (Acacia karroo and Acacia nilotica) and a C4 grass, Themeda triandra, exposed to a gradient of CO2 concentrations from 180 (typical of LGM) to 1000 µmol mol?1 in open‐top chambers in a glasshouse as a first empirical test of this idea. Photosynthesis, total stem length, total stem diameter, shoot dry weight and root dry weight of the acacias increased significantly across the CO2 gradient, saturating at higher CO2 concentrations. After clipping to simulate fire, plants showed an even greater response in total stem length, total stem diameter and shoot dry weight, signalling the importance of re‐sprouting following disturbances such as fire or herbivory in savanna systems. Root starch (per unit root mass and total root starch per plant) increased steeply along the CO2 gradient, explaining the re‐sprouting response. In contrast to the strong response of tree seedlings to the CO2 gradient, grass productivity showed little variation, even at low CO2 concentrations. These results suggest that CO2 has significant direct effects on tree recruitment in grassy ecosystems, influencing the ability of trees to recover from fire damage and herbivory. Fire and herbivore regimes that were effective in controlling tree increases in grassy ecosystems could thus be much less effective in a CO2‐rich world, but field‐based tests are needed to confirm this suggestion.  相似文献   

18.
Questions: Most modern fire‐prone landscapes have experienced disruptions of their historic fire regimes. Are the primary tallgrass prairies of the Flint Hills reflective of a history of continuous fire occurrence? Did fire frequency, severity, size and seasonality change in connection with changes in land use? Has fire occurrence been related to drought conditions? Location: Edges of Cross Timbers forest stands at the Tallgrass Prairie Preserve (TGPP) in the Flint Hills of Osage County, Oklahoma, USA. Methods: Cross‐sections of 76 Quercus stellata were collected from Cross Timbers stands at or near the grassland edge in the TGPP. Dendrochronological methods were used to identify years of formation for tree rings and fire scars. Superposed epoch analysis was used to evaluate the effect of drought conditions on fire occurrence. Results: Fires were recorded in 46.6% of the years between 1729 and 2005. In 41 cross‐sections at one site, the mean fire interval between 1759 and 2003 was 2.59 years, with fire interval decreasing from a mean fire interval of 3.76 years in the early part of the record to 2.13 years in modern times. No extended periods without fire were recorded in the study area. Drought conditions had no significant effect on fire occurrence. Conclusions: In contrast with many fire‐prone landscapes worldwide, the prairies of the Flint Hills have experienced no recent fire suppression or exclusion. Changes in fire frequency mark transitions in land use, primarily from being traditionally used by Native Americans to being managed for cattle production.  相似文献   

19.
The North American Upper Ordovician reference standard, the Cincinnatian Series, contains rich shelly microfossil faunas in its type area in the Cincinnati Region but graptolites are uncommon in most of its shallow-water calcareous sediments. Consequently, the graptolite correlation of this key sequence has remained uncertain, in part, even controversial. A review of both previously published recently discovered graptolite Occurrences in the type Cincinnatian, combined with data from the important graptolite successions in Oklahoma New York-Quebec, has not only clarified the graptolite correlation of the Cincinnatian but also added new data on the morphology taxonomy, the vertical horizontal distribution, of several taxa. The information now at hand indicates that the Edenian Stage correlates with the C. spiniferus Zone, the Maysvillian Stage with the C. pygmaeus lower middle P. manitoulinensis Zone, the Richmondian Stage with the upper P. manitoulinensis , the D. complanatus , possibly part of the C. inuiti Zone. Comparison between graptolite conodont biostratigraphic evidence reveals no apparent conflict. Correlations are proposed between Upper Ordovician North American stages, graptolite conodont zones, successions in Texas, Oklahoma, Sweden, European graptolite zones, British series.  相似文献   

20.
Abstract. The decline in tree density on sandy soils in savannas is highly correlated with declining mean annual rainfall along the North Australian Tropical Transect (NATT). We reanalyse various data on water use by individual trees and argue that a common relationship can be used to estimate annual water use by tree stands along the NATT from ca. 600 mm mean annual rainfall to at least 1600 mm. Where rainfall is less than 600 mm, trees of a given size use less water than at sites where rainfall is higher. We use these relationships to relate water use at the stand scale with mean annual rainfall along the NATT. From this we show that the empirical data imply that the minimum depth of sandy soil that needs to be exploited by trees declines with increasing aridity along the NATT from more than 5 m to less than 1 m. This finding is consistent with other observations and the pattern that with increasing aridity, an increasing proportion of rainfall coming from isolated storms rather than from periods of extended monsoon activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号