首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The motility of single one-headed kinesin molecules (K351 and K340), which were truncated fragments of Drosophila two-headed kinesin, has been tested using total internal reflection fluorescence microscopy. One-headed kinesin fragments moved continuously along the microtubules. The maximum distance traveled until the fragments dissociated from the microtubules for both K351 and K340 was approximately 600 nm. This value is considerably larger than the space resolution of the measurement system (SD approximately 30 nm). Although the movements of the fragments fluctuated in forward and backward directions, statistical analysis showed that the average movements for both K340 and K351 were toward the plus end of the microtubules, i.e., forward direction. When BDTC (a 1.3-S subunit of Propionibacterium shermanii transcarboxylase, which binds weakly to a microtubule), was fused to the tail (C-terminus) of K351, its movement was enhanced, smooth, and unidirectional, similar to that of the two-headed kinesin fragment, K411. However, the travel distance and velocity of K351BDTC molecules were approximately 3-fold smaller than that of K411. These observations suggest that a single kinesin head has basal motility, but coordination between the two heads is necessary for stabilizing the basal motility for the normal level of kinesin processivity.  相似文献   

2.
The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin.  相似文献   

3.
Conventional kinesin transports membranes along microtubules in vivo, but the majority of cellular kinesin is unattached to cargo. The motility of non-cargo-bound, soluble kinesin may be repressed by an interaction between the amino-terminal motor and carboxy-terminal cargo-binding tail domains, but neither bead nor microtubule-gliding assays have shown such inhibition. Here we use a single-molecule assay that measures the motility of kinesin unattached to a surface. We show that full-length kinesin binds microtubules and moves about ten times less frequently and exhibits discontinuous motion compared with a truncated kinesin lacking a tail. Mutation of either the stalk hinge or neck coiled-coil domain activates motility of full-length kinesin, indicating that these regions are important for tail-mediated repression. Our results suggest that the motility of soluble kinesin in the cell is inhibited and that the motor becomes activated by cargo binding.  相似文献   

4.
Conventional kinesin (Kinesin-1) is a microtubule-based molecular motor that supports intracellular vesicle/organelle transport in various eukaryotic cells. To arrange kinesin motors similarly to myosin motors on thick filaments in muscles, the motor domain of rat conventional kinesin (amino acid residues 1-430) fused to the C-terminal 829 amino acid residues of catchin (KHC430Cat) was bacterially expressed and attached to catchin filaments that can attach to and arrange myosin molecules in a bipolar manner on their surface. Unlike the case of myosin where actin filaments move toward the center much faster than in the opposite direction along the catchin filaments, microtubules moved at the same speed in both directions. In addition, many microtubules moved across the filaments at the same speed with various angles between the axes of the microtubule and catchin filament. Kinesin/catchin chimera proteins with a shorter kinesin neck domain were also prepared. Those without the whole hinge 1 domain and the C-terminal part of the neck helix moved microtubules toward the center of the catchin filaments significantly, but only slightly, faster than in the opposite direction, although the movements in both directions were slower than those of the KHC430Cat construct. The results suggest that kinesin has substantial mechanical flexibility within the motor domain, possibly within the neck linker, enabling its interaction with microtubules having any orientation.  相似文献   

5.
We used a truncated form of human conventional kinesin (K560) and a set of synthetic tail-derived peptides to investigate the mechanism by which the kinesin tail domain inhibits the protein's ATPase and motor activities. A peptide that spans residues 904-933 (C3) exhibited the strongest inhibitory effect on steady-state motility and ATPase activity. This inhibition reflected diminished binding of the ADP-bound kinesin head to the microtubule. Although peptide C3 bound to both K560 and microtubules, gliding assays using subtilisin-treated microtubules suggested that the binding to the microtubule contributes only little to the inhibition if there is sufficient affinity between the peptide and kinesin. We suggest that tail-mediated inhibition of kinesin activity is mainly the product of allosteric inhibition induced by the intramolecular binding of the kinesin tail domain to the motor domain, but simultaneous binding of the tail to the microtubule also may exert a minor effect.  相似文献   

6.
Kinesins are molecular motors that unidirectionally move along microtubules using the chemical energy of ATP. Although the core structure of kinesins is similar to that of myosins, the lever-arm hypothesis, which is widely accepted as a plausible mechanism to explain the behaviors of myosins, cannot be directly applied to kinesins. Masuda has proposed a mechanochemical process called the ‘Driven-by-Detachment (DbD)’ mechanism to explain the characteristic behaviors of myosins, including the backward movement of myosin VI and the loose coupling phenomenon of myosin II. The DbD mechanism assumes that the energy of ATP is mainly used to detach a myosin head from an actin filament by temporarily reducing the affinity of the myosin against the actin. After the affinity is recovered, the detached head has potential energy originating from the attractive force between the myosin and the actin. During the docking process, the potential energy is converted into elastic energy within the myosin molecule, and the intramolecular elastic energy is finally used to produce the power strokes. In the present paper, the DbD mechanism was used to explain the hand-over-hand motion of the conventional kinesin. The neck linker of the kinesin is known to determine the directionality of the motility but, in this paper, it was assumed that the neck linker was not directly engaged in the power strokes, which were driven by the attractive force between the kinesin head and the microtubule. Based on this assumption, simple mechanical simulations showed that the model of a kinesin dimer processively moved along a microtubule protofilament, if the affinity of the kinesin against the microtubule is appropriately controlled. Moreover, if an external force was applied to the center of the kinesin dimer, the dimer moved backward along a microtubule, as observed in experimental motility assays.  相似文献   

7.
Motor proteins, myosin, and kinesin have gamma-phosphate sensors in the switch II loop that play key roles in conformational changes that support motility. Here we report that a rotary motor, F1-ATPase, also changes its conformations upon phosphate release. The tryptophan mutation was introduced into Arg-333 in the beta subunit of F1-ATPase from thermophilic Bacillus PS3 as a probe of conformational changes. This residue interacts with the switch II loop (residues 308-315) of the beta subunit in a nucleotide-bound conformation. The addition of ATP to the mutant F1 subcomplex alpha3beta(R333W)3gamma caused transient increase and subsequent decay of the Trp fluorescence. The increase was caused by conformational changes on ATP binding. The rate of decay agreed well with that of phosphate release monitored by phosphate-binding protein assays. This is the first evidence that the beta subunit changes its conformation upon phosphate release, which may share a common mechanism of exerting motility with other motor proteins.  相似文献   

8.
Q Li  J P Jin    H L Granzier 《Biophysical journal》1995,69(4):1508-1518
Titin is a striated muscle-specific giant protein (M(r) approximately 3,000,000) that consists predominantly of two classes of approximately 100 amino acid motifs, class I and class II, that repeat along the molecule. Titin is found inside the sarcomere, in close proximity to both actin and myosin filaments. Several biochemical studies have found that titin interacts with myosin and actin. In the present work we investigated whether this biochemical interaction is functionally significant by studying the effect of titin on actomyosin interaction in an in vitro motility assay where fluorescently labeled actin filaments are sliding on top of a lawn of myosin molecules. We used genetically expressed titin fragments containing either a single class I motif (Ti I), a single class II motif (Ti II), or the two motifs linked together (Ti I-II). Neither Ti I nor Ti II alone affected actin-filament sliding on either myosin, heavy meromyosin, or myosin subfragment-1. In contrast, the linked fragment (Ti I-II) strongly inhibited actin sliding. Ti I-II-induced inhibition was observed with full-length myosin, heavy meromyosin, and myosin subfragment-1. The degree of inhibition was largest with myosin subfragment-1, intermediate with heavy meromyosin, and smallest with myosin. In vitro binding assays and electrophoretic analyses revealed that the inhibition is most likely caused by interaction between the actin filament and the titin I-II fragment. The physiological relevance of the novel finding of motility inhibition by titin fragments is discussed.  相似文献   

9.
Microtubule based motors like conventional kinesin (Kinesin-1) and Unc104 (Kinesin-3), and classical microtubule associated proteins (MAPs), including MAP2, are intimately involved in neurite formation and organelle transport. The processive motility of both these kinesins involves weak microtubule interactions in the ADP-bound states. Using cosedimentation assays, we have investigated these weak interactions and characterized their inhibition by MAP2c. We show that Unc104 binds microtubules with five-fold weaker affinity and two-fold higher stoichiometry compared with conventional kinesin. Unc104 and conventional kinesin binding affinities are primarily dependent on positively charged residues in the Unc104 K-loop and conventional kinesin neck coiled-coil and removal of these residues affects Unc104 and conventional kinesin differently. We observed that MAP2c acts primarily as a competitive inhibitor of Unc104 but a mixed inhibitor of conventional kinesin. Our data suggest a specific model in which MAP2c differentially interferes with each kinesin motor by inhibiting its weak attachment to the tubulin C-termini. This is reminiscent of the defects we have observed in Unc104 and kinesin mutants in which the positively charged residues in K-loop and neck coiled-coil domains were removed.  相似文献   

10.
Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.  相似文献   

11.
Mutations in the cardiac myosin regulatory light chain (RLC, MYL2 gene) are known to cause inherited cardiomyopathies with variable phenotypes. In this study, we investigated the impact of a mutation in the RLC (K104E) that is associated with hypertrophic cardiomyopathy (HCM). Previously in a mouse model of K104E, older animals were found to develop cardiac hypertrophy, fibrosis, and diastolic dysfunction, suggesting a slow development of HCM. However, variable penetrance of the mutation in human populations suggests that the impact of K104E may be subtle. Therefore, we generated human cardiac myosin subfragment-1 (M2β-S1) and exchanged on either the wild type (WT) or K104E human ventricular RLC in order to assess the impact of the mutation on the mechanochemical properties of cardiac myosin. The maximum actin-activated ATPase activity and actin sliding velocities in the in vitro motility assay were similar in M2β-S1 WT and K104E, as were the detachment kinetic parameters, including the rate of ATP-induced dissociation and the ADP release rate constant. We also examined the mechanical performance of α-cardiac myosin extracted from transgenic (Tg) mice expressing human wild type RLC (Tg WT) or mutant RLC (Tg K104E). We found that α-cardiac myosin from Tg K104E animals demonstrated enhanced actin sliding velocities in the motility assay compared with its Tg WT counterpart. Furthermore, the degree of incorporation of the mutant RLC into α-cardiac myosin in the transgenic animals was significantly reduced compared with wild type. Therefore, we conclude that the impact of the K104E mutation depends on either the length or the isoform of the myosin heavy chain backbone and that the mutation may disrupt RLC interactions with the myosin lever arm domain.  相似文献   

12.
Kinesin-1 dimerizes via the coiled-coil neck domain. In contrast to animal kinesins, neck dimerization of the fungal kinesin-1 NcKin requires additional residues from the hinge. Using chimeric constructs containing or lacking fungal-specific elements, the proximal part of the hinge was shown to stabilize the neck coiled-coil conformation in a complex manner. The conserved fungal kinesin hinge residue W384 caused neck coiled-coil formation in a chimeric NcKin construct, including parts of the human kinesin-1 stalk. The stabilizing effect was retained in a NcKinW384F mutant, suggesting important pi-stacking interactions. Without the stalk, W384 was not sufficient to induce coiled-coil formation, indicating that W384 is part of a cluster of several residues required for neck coiled-coil folding. A W384-less chimera of NcKin and human kinesin possessed a non-coiled-coil neck conformation and showed inhibited activity that could be reactivated when artificial interstrand disulfide bonds were used to stabilize the neck coiled-coil conformation. On the basis of yeast two-hybrid data, we propose that the proximal hinge can bind kinesin's cargo-free tail domain and causes inactivation of kinesin by disrupting the neck coiled-coil conformation.  相似文献   

13.
The properties of myosin modified at the SH2 group (Cys-697) were studied and compared with the previously reported properties of myosin modified at the SH1 group (Cys-707). 4-[N-[(iodoacetoxy)ethyl]-N methylamino]-7-nitrobenz-2-oxa-1, 3-diazole (IANBD) was used for selective modification of the SH2 group on myosin. SH2-labeled heavy meromyosin (SH2-HMM), similar to SH1-labeled HMM (SH1-HMM), did not propel actin filaments in the in vitro motility assays. SH1- and SH2-HMM produced similar amounts of load in the mixtures with unmodified HMM; the sliding speed of actin filaments gradually decreased with an increase in the fraction of either one of the modified HMMs in the mixture. In analogy to SH1-labeled myosin subfragment 1 (SH1-S1), SH2-labeled S1 (SH2-S1) activated regulated actin in the in vitro motility assays. SH2 modification inhibited Mg-ATPase of S1 and its activation by actin. The weak binding of S1 to actin was unaffected whereas the strong binding was weakened by SH2 modification. Overall, our results demonstrate similar behavior of SH1- and SH2-modified myosin heads in the in vitro motility assays despite some differences in their enzymatic properties. The effects of these modifications are ascribed to the location of the SH1-SH2 helix relative to other functional centers of S1.  相似文献   

14.
The two cardiac myosin heavy chain isoforms, alpha and beta, exhibit distinct functional characteristics and therefore may be distributed regionally within the heart to match the functional demands of a specific region. In adult mouse hearts, which predominantly express alpha-myosin heavy chain, we observed high concentrations of beta-myosin in distinct areas such as at the tip of papillary muscles and at the base close to the valvular annulus. In light of these distinct distribution patterns of the myosin isoforms, we subsequently explored the isoform-specific structure-function relationships of the myosins. The alpha- and beta-isoforms are 93% identical in amino acid sequence, but it remains unclear which of the nonidentical residues determines isoform functionality. We hypothesized that residues situated within or close to the actin-binding interface of the myosin head influence actin binding and thereby modulate actin-activated ATPase activity. A chimeric myosin was created containing beta-sequence from amino acid 417 to 682 within the alpha-backbone. In mice, approximately 70% of the endogenous cardiac protein was replaced with the chimeric myosin. Myofibrils containing chimeric myosin exhibited ATPase activities that were depressed to the levels observed in hearts expressing approximately 70% beta-myosin. In vitro motility assays showed that the actin filament sliding velocity generated by chimeric myosin was similar to that of alpha-myosin, almost twice the velocities observed with beta-myosin. These data indicate that this large domain sequence switch conferred beta-like actin-activated ATPase activities to the chimeric myosin, suggesting that this region is responsible for the distinct hydrolytic properties of these myosin isoforms.  相似文献   

15.
The digestion of human IgG1/K myeloma proteins with pepsin in the presence of 8 M-urea produces fragments that differ from those produced by aqueous peptic digestion, and from other characteristic immunoglobulin fragments. Fb'2, the larger urea/pepsin fragment, was previously shown to consist of the constant regions of the light chains, and the CH1 domains and hinge regions of the heavy chains. The smaller fragment, upFc, has now been characterized. After reduction, three peptides were released from fragment upFc. Amino acid sequencing, N- and C-terminal determinations and amino acid compositions have enabled these peptides to be identified as residues Ile-253 to Leu-306, residues Thr-307 to Asp-376 and residues Thr-411 to Gly-446 of the heavy chain. Fragment upFc therefore contains the entire Fc region, beginning at residue Ile-253, except for a 34-residue section from within the CH3-domain disulphide loop. Peptic digestion of IgG1/K proteins in 8M-urea therefore provides a method for isolating from gamma1 heavy chains five homogeneous peptides in good yield, which account for almost the entire constant region. Characterization of fragments Fb'2 and upFc has shown that the action of pepsin in urea is entirely different from that of aqueous pepsin. Two gamma1 heavy chains have been shown to differ in sequence at three positions from the sequence reported for protein Eu.  相似文献   

16.
S Iwatani  A H Iwane  H Higuchi  Y Ishii  T Yanagida 《Biochemistry》1999,38(32):10318-10323
To probe the structural changes within kinesin molecules, we made the mutants of motor domains of two-headed kinesin (4-411 aa) in which either all the five cysteines or all except Cys45 were mutated. A residual cysteine (Cys45) of the kinesin mutant was labeled with an environment-sensitive fluorescent probe, acrylodan. ATPase activity, mechanical properties, and fluorescence intensity of the mutants were measured. Upon acrylodan-labeled kinesin binding to microtubules in the presence of 1 mM AMPPNP, the peak intensity was enhanced by 3.4-fold, indicating the structural change of the kinesin head by the binding. Substitution of cysteines decreased both the maximum microtubule-activated ATPase and the sliding velocity to the same extent. However, the maximum force and the step size were not affected; the force produced by a single molecule was 6-6.5 pN, and a step size due to the hydrolysis of one ATP molecule by kinesin molecules was about 10 nm for all kinesins. This step size was close to a unitary step size of 8 nm. Thus, the mechanical events of kinesin are tightly coupled with the chemical events.  相似文献   

17.
Intrastrand cross-linking of actin filaments by ANP, N-(4-azido-2-nitrophenyl) putrescine, between Gln-41 in subdomain 2 and Cys-374 at the C-terminus, was shown to inhibit force generation with myosin in the in vitro motility assays [Kim et al. (1998) Biochemistry 37, 17801-17809]. To clarify the immobilization of which of these two sites inhibits the actomyosin motor, the properties of actins with partially overlapping cross-linked sites were examined. pPDM (N,N'-p-phenylenedimaleimide) and ABP [N-(4-azidobenzoyl) putrescine] were used to obtain actin filaments cross-linked ( approximately 50%) between Cys-374 and Lys-191 (interstrand) and Gln-41 and Lys-113 (intrastrand), respectively. ANP, ABP, and pPDM cross-linked filaments showed similar inhibition of their sliding speeds and force generation with myosin ( approximately 25%) in the in vitro motility assays. In analogy to ANP cross-linking of actin, pPDM and ABP cross-linkings did not change the strong S1 binding to actin and the V(max) and K(m) parameters of actomyosin ATPase. The similar effects of these three cross-linkings reveal the tight coupling between structural elements of the subdomain 2/subdomain 1 interface and show the importance of its dynamic flexibility to force generation with myosin. The possibility that actin cross-linkings inhibit rate-limiting steps in motion and force generation during myosin cross-bridge cycle was tested in stopped-flow experiments. Measurements of the rates of mantADP release from actoS1 and ATP-induced dissociation of actoS1 did not reveal any differences between un-cross-linked and ANP cross-linked actin in these complexes. These findings are discussed in terms of the uncoupling between force generation and other aspects of actomyosin interactions due to a constrained dynamic flexibility of the subdomain 2/subdomain 1 interface in cross-linked actin filaments.  相似文献   

18.
In vitro motility of skeletal muscle myosin and its proteolytic fragments   总被引:1,自引:0,他引:1  
We have compared actin-activated myosin ATPase activity, myosin binding to actin, and the velocity of myosin-induced actin sliding in order to understand the mechanism of myosin motility. In our in vitro assay, F-actin slides at a constant velocity, regardless of length. The F-actin could slide over myosin heads at KCl concentrations below a critical value (60 mM with myosin and HMM, 100 mM with S-1), and the sliding velocities were quite similar below the critical KCl concentration. However, at KCl concentrations close to the critical value, the sliding F-actin is attached to only one or a few particular points on the surface, each of which perhaps consists of a single head of myosin. The KATPase values for actin-activated ATPase were approximately 300 microM for S-1 and approximately 200 microM with HMM below the critical KCl concentration, and approximately 5,000 microM above the critical KCl concentration. This increase in KATPase is due to a drastic reduction in the binding affinity of myosin heads to F-actin, as determined by a proteolytic digestion method and direct observation by fluorescence microscopy. We also show that the Vmax of actin-activated myosin ATPase activity decreases steadily with increasing KCl concentration, even though the velocity of F-actin sliding remains unchanged. This result provides evidence that the ATPase activity is not necessarily linked to motility. We discuss possible models that do not require a tight coupling between myosin ATPase and motility.  相似文献   

19.
Rabbit muscle myosin S1 was modified either at SH1 alone or at both SH1 and SH2, using a series of alkylthiolating reagents of increasing size, designed for correlating gradually changing structural disturbances in the thiol region with functional impairments in the myosin head. The reagents were of the type H(CH(2))(n)()-S-NTB, (NTB = 2-nitro-5-thiobenzoate) (n = 1, 2, 5, 8, 9, 10, 11, and 12). Modification of only SH1 led to the expected activation of the Ca(2+)-ATPase, but only with small reagents, while reagents with n > or = 10 caused inhibition of the Ca(2+)-ATPase. Modification of both SH1 and SH2 showed the expected inhibition of Ca(2+)-ATPase but likewise allowed considerable residual Ca(2+)-ATPase activity if the residues were small. Trapping of the nucleotide, known to occur with cross-linking reagents, was seen also with monovalent reagents, provided their length exceeded n = 9 or 10. All S1 derivatives prepared in this study possessed an affinity for actin comparable to native S1 but lacked sliding motility in in vitro motility assays. The biochemical data of this study can be related to existing models of myosin S1 and recent structural data [Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Gy?rgyi, A. G., and Cohen, C. (1999) Cell 97, 459-470] by making the assumptions that modification at SH1 prevents the formation of the SH1 helix mandatory for the transmission of conformational energy and that mobility of the thiol region is a prerequisite for ATPase activity. Immobilization of the thiol region by residues of increasing size apparently leads to lower enzyme activity and, finally, to inhibition of nucleotide exchange.  相似文献   

20.
Hydrolysis of the triphosphate moiety of ATP, catalyzed by myosin, induces alterations in the affinity of the myosin heads for actin filaments via conformational changes, thereby causing motility of the actomyosin complexes. To elucidate the contribution of the triphosphate group attached to adenosine, we examined the enzymatic activity of heavy meromyosin (HMM) with actin filaments for inorganic tripolyphosphate (3PP) using a Malachite green method and evaluated using fluorescence microscopy the effects of 3PP on actin filament motility on HMM-coated glass slides. In the presence of MgCl2, HMM hydrolyzed 3PP at a maximum rate of 0.016 s−1 HMM−1, which was four times lower than the hydrolysis rate of ATP. Tetrapolyphosphate (4PP) was hydrolyzed at a rate similar to that of 3PP hydrolysis. The hydrolysis rates of 3PP and 4PP were enhanced by roughly 10-fold in the presence of actin filaments. In motility assays, the presence of polyphosphates did not lead to the sliding movement of actin filaments. Moreover, in the presence of ATP at low concentrations, the sliding velocity of actin filaments decreased as the concentration of added polyphosphate increased, indicating a competitive binding of polyphosphate to myosin heads with ATP. These results suggested that the energy produced by standalone triphosphate hydrolysis did not induce the unidirectional motion of actomyosin and that the link between triphosphate and adenosine was crucial for motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号